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ABSTRACT 

PIEROTT, R. M. R. Advancing Structural Design: Integration of Finite Data and 

Machine Learning for Optimizing Reinforced Concrete Structures. DSc. Thesis (Doctorate in 

Environmental Engineering), Environmental Engineering Program, Escola Politécnica & Escola de 

Química, Federal University of Rio de Janeiro, 2024. Advisors: Assed Haddad. 

 

This thesis presents a novel approach to enhancing the structural design and 

performance of reinforced and prestressed concrete structures through the integration of finite 

data sets and advanced machine learning techniques. The research addresses a gap in traditional 

structural engineering methods, which often rely on static assumptions and deterministic 

models that inadequately account for the dynamic factors influencing long-term structural 

performance. The cornerstone of this work is the development of a discrete optimization model 

that shifts from the conventional continuous methods, enabling the practical optimization of 

real-world reinforced concrete structures. This model, which utilizes genetic algorithms, not 

only optimizes material usage but also establishes a robust foundation for incorporating 

predictive tools, particularly random forest machine learning models, into the structural design 

process. The thesis further explores the application of these methodologies in various contexts, 

including the analysis of stress corrosion cracking in prestressed concrete, the predictive 

modeling of corrosion dynamics in chloride-rich environments, and the evaluation of 

innovative reinforcement techniques using welded steel mesh stirrups. Additionally, the 

research investigates the potential of recycled aggregate concrete (RAC) in structural 

applications, supported by a predictive model tailored for RAC in bridge dry joints, and 

examines the shear strength of sand-lightweight concrete deep beams reinforced with steel 

fibers. The integration of finite data with machine learning prediction methods has led to the 

proposal of new equations that enhance the design process across several fields related to 

concrete structures. This innovative methodology not only addresses existing challenges but 

also opens new ways for future research and application. By providing a reliable and adaptable 

framework, this thesis contributes to the field of engineering, paving the way for the 

development of more resilient, efficient, and sustainable concrete structures. 

 

Keywords: Predictive Modeling, Machine Learning, Discrete Optimization, Finite Data, 

Concrete Structures. 



 
 

RESUMO 

PIEROTT, R. M. R. Advancing Structural Design: Integration of Finite Data and 

Machine Learning for Optimizing Reinforced Concrete Structures. Tese (Doutorado em 

Engenharia Ambiental), Programa de Engenharia Ambiental, Escola Politécnica & Escola de 

Química, Universidade Federal do Rio de Janeiro, 2024. Orientadores: Assed Haddad, Vivian WY 

Tam. 

 

Esta tese apresenta uma abordagem inovadora para aprimorar o projeto estrutural e o 

desempenho de estruturas de concreto armado e protendido por meio da integração de conjuntos 

de dados finitos e técnicas avançadas de aprendizado de máquina. A pesquisa aborda uma 

lacuna nos métodos tradicionais de engenharia estrutural, que frequentemente se baseiam em 

suposições estáticas e modelos determinísticos que não levam adequadamente em conta os 

fatores dinâmicos que influenciam o desempenho estrutural a longo prazo. O ponto central deste 

trabalho é o desenvolvimento de um modelo de otimização discreta que se afasta dos métodos 

contínuos convencionais, permitindo a otimização prática de estruturas reais de concreto 

armado. Este modelo, que utiliza algoritmos genéticos, não apenas otimiza o uso de materiais, 

mas também estabelece uma base sólida para a incorporação de ferramentas preditivas, 

particularmente modelos de aprendizado de máquina baseados em floresta aleatória (random 

forest), no processo de design estrutural. A tese explora ainda a aplicação dessas metodologias 

em diversos contextos, incluindo a análise da corrosão sob tensão em concreto protendido, a 

modelagem preditiva da dinâmica de corrosão em ambientes ricos em cloretos e a avaliação de 

técnicas inovadoras de reforço utilizando estribos de malha de aço soldada. Além disso, a 

pesquisa investiga o potencial do concreto com agregados reciclados (CAR) em aplicações 

estruturais, apoiada por um modelo preditivo adaptado para CAR em juntas secas de pontes, e 

examina a resistência ao cisalhamento de vigas profundas de concreto leve com areia reforçadas 

com fibras de aço. A integração de dados finitos com métodos de previsão por aprendizado de 

máquina resultou na proposta de novas equações que aprimoram o processo de design em 

diversos campos relacionados às estruturas de concreto. Essa metodologia inovadora não só 

resolve os desafios existentes, como também abre novas possibilidades para futuras pesquisas 

e aplicações. Ao fornecer uma estrutura confiável e adaptável, esta tese contribui para o campo 

da engenharia, pavimentando o caminho para o desenvolvimento de estruturas de concreto mais 

resilientes, eficientes e sustentáveis. 

 



 
 

Keywords: Modelagem de Previsão, Aprendizado de Máquina, Otimização Discreta, Conjunto 

Finito de Dados, Estruturas de Concreto.  
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1 INTRODUCTION 

 BACKGROUND AND MOTIVATION 

Structural engineering has long relied on established empirical methods and 

standardized codes to guide the design and construction of reinforced and prestressed concrete 

structures. These methods, while robust, are often constrained by their inability to fully 

anticipate the long-term performance of structures, especially when exposed to complex and 

evolving environmental conditions. The need for more advanced, predictive approaches in 

structural design has become increasingly evident as the construction industry faces growing 

demands for sustainability, resilience, and efficiency. 

Predictive modeling offers a promising solution to these challenges, providing a means 

to simulate the behavior of structural elements under a wide range of conditions. By integrating 

empirical data into these models, engineers can enhance the reliability and accuracy of their 

predictions, leading to better-informed design decisions. This approach aligns with the broader 

goal of sustainable construction, where the long-term performance of structures is a critical 

consideration. Predictive models can address various structural concerns, from material 

degradation and corrosion to load-bearing capacity and failure mechanisms, all of which 

significantly impact the longevity and safety of concrete structures. 

The importance of integrating predictive modeling into the structural design process is 

underscored by the growing complexity of modern infrastructure. Traditional design methods, 

which often focus on immediate performance and compliance with static code requirements, 

may not adequately account for the dynamic factors that influence a structure's lifespan. These 

factors include environmental stressors, material aging, and unforeseen operational loads, all of 

which can degrade structural integrity over time. By contrast, predictive models can incorporate 

these variables into the design process, offering a more comprehensive assessment of a 

structure's long-term behavior. 

Moreover, the integration of predictive modeling techniques is not merely a technical 

challenge but also a strategic one. The adoption of these models requires a shift in how structural 

design is approached, moving from a reactive to a proactive mindset. This shift involves not 

only the development of sophisticated models but also the establishment of frameworks that 

allow these models to be seamlessly integrated into the design and construction workflow. Such 
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integration is crucial for ensuring that predictive models are not just theoretical tools but 

practical solutions that enhance the durability, safety, and sustainability of concrete structures. 

 MOTIVATION OF THE STUDY 

The motivation for this study stems from the limitations of current structural design 

practices in addressing the long-term performance of reinforced and prestressed concrete 

structures. Traditional methods often rely on empirical data and static analysis, which, while 

useful, do not fully capture the complexities of real-world conditions. The dynamic nature of 

environmental stressors, material degradation, and operational loads requires a more nuanced 

approach, one that predictive modeling is uniquely positioned to provide. 

Predictive modeling techniques, supported by empirical data, offer a pathway to 

overcoming these limitations. These models can simulate the effects of various stressors on 

concrete structures over time, providing engineers with the tools to design structures that are 

not only compliant with current codes but also resilient to future challenges. The integration of 

these models into the structural design process represents a significant advancement in the field, 

allowing for more accurate predictions of structural performance and, consequently, more 

reliable and sustainable designs. 

However, the practical implementation of predictive modeling in structural design is 

fraught with challenges. One of the key issues is the lack of standardized methodologies for 

integrating these models into the existing design frameworks. While predictive models are 

widely used in other fields, their application in structural engineering is still emerging. This gap 

presents an opportunity to develop new approaches that bridge the divide between predictive 

modeling and traditional structural design practices. 

Another critical challenge is the validation of predictive models. While these models 

can generate valuable insights, their accuracy depends on the quality of the empirical data used 

to support them. Ensuring that predictive models are based on reliable and relevant data is 

essential for their successful integration into the design process. This study aims to address 

these challenges by exploring how predictive modeling techniques, underpinned by robust 

empirical data, can be effectively integrated into the structural design of reinforced and 

prestressed concrete structures to enhance their long-term performance. 

The research presented in this thesis is motivated by the need to push the boundaries of 

structural design beyond the limitations of traditional methods. By integrating predictive 
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models into the design process, this study seeks to contribute to the development of more 

resilient and sustainable concrete structures, capable of withstanding the challenges of a 

changing environment and evolving operational demands. 

 RESEARCH QUESTION AND OBJECTIVES 

1.3.1 Research Question 

The central research question of this thesis is: How can predictive modeling techniques, 

supported by empirical data, be integrated into the structural design process to enhance the 

long-term performance of reinforced concrete structures? 

This question addresses a gap in the field of structural engineering, where traditional 

design methods often fall short in considering the complex, dynamic factors that influence the 

long-term performance of reinforced concrete structures. These methods typically rely on static 

assumptions and deterministic models, which may not fully capture the variability and 

uncertainties present in real-world conditions. As a result, there is a risk of underestimating 

vulnerabilities that could affect the safety and durability of concrete structures over time. 

By incorporating predictive modeling techniques into the structural design process, this 

research aims to develop a more resilient and adaptable approach to design. Predictive models, 

informed by empirical data from specimen testing and performance evaluations, can simulate a 

wide range of scenarios, including environmental stressors, material degradation, and varying 

load conditions. This allows for better anticipation of future challenges and the strengthening 

of structural designs to address them. 

Integrating these models into the design process ensures that structures are designed not 

only to meet current standards but also to optimize long-term performance. This approach 

enhances the reliability and safety of concrete structures, equipping engineers with tools to 

design buildings and infrastructure that can endure over time, even as conditions change. 

This research question is significant because it addresses key aspects of modern 

engineering: the need for sustainability in construction, the importance of long-term structural 

integrity, and the role of advanced technologies in the design and analysis of complex systems. 

By exploring how predictive models can be applied in structural design, this thesis aims to 

contribute to the development of more durable and sustainable concrete structures. 
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1.3.2 Research Objectives 

The objectives of this research are threefold, each aimed at addressing different aspects 

of the central research question: 

 

Objective 1: Development of Predictive Models 

The first objective is to develop predictive models that can accurately simulate the 

behavior of reinforced and prestressed concrete structures under a variety of conditions. These 

models will be based on empirical data, ensuring that they reflect real-world performance. The 

goal is to create models that are theoretically and practically applicable, capable of predicting 

stressors, material degradation, and operational loads on structural integrity. 

 

Objective 2: Comparative Performance Evaluation 

Analyze the collected data to evaluate the performance of different materials and 

structural configurations under stress. This comparative evaluation will highlight the strengths 

and weaknesses of each approach, informing the development of more robust design practices. 

 

Objective 3: Integration of Machine Learning Models and Equation Development 

Utilize the empirical data to develop machine learning models that refine or create new 

structural equations with high reliability. These models will be integrated into the design 

process, providing engineers with advanced tools to predict structural performance accurately 

and enhance standard codes. 

 INITIAL RESEARCH 

Chapter 4, titled "A Mathematical Optimization Model for the Design and Detailing of 

Reinforced Concrete," marks the beginning of the research journey that led to this thesis. This 

chapter, which was the second published paper in this series of research efforts, provided critical 

insights into the optimization of reinforced concrete design. The work done in this chapter laid 

the groundwork for the development of more advanced predictive models, aiming finite 

quantity of data, setting the stage for the broader exploration of predictive modeling techniques 

in structural engineering. 
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The optimization model developed in this chapter introduced key concepts and 

methodologies that were later expanded upon in the subsequent research. It provided a practical 

framework for improving the efficiency and accuracy of reinforced concrete design, 

considering standard codes restrictions. The optimization model developed in this chapter is a 

crucial tool for the subsequent work on predictive modelling by defining the reinforcement 

layouts as matrixes. It offers a method for determining optimal design variables, which can then 

be used to enhance the accuracy and reliability of predictive models. 

However, the scope of the thesis has since expanded to address a broader and more 

complex set of challenges. While Chapter 4 remains an important part of the research, the main 

focus of the thesis is now on the integration of predictive modeling techniques into the structural 

design process. This shift reflects the evolving nature of the research, as it moved from a 

specific focus on optimization to a more comprehensive exploration of predictive modeling in 

structural engineering. Specifically, the thesis explores how predictive modeling can be 

integrated into the structural design process to improve the long-term performance of reinforced 

and prestressed concrete structures. 

This evolution of the research focus reflects the growing recognition of the importance 

of predictive modeling in structural engineering. As the field continues to advance, the ability 

to anticipate and mitigate potential issues before they arise is becoming increasingly important. 

By building on the work done in Chapter 4, this thesis seeks to contribute to the development 

of more resilient and sustainable concrete structures, ultimately enhancing the safety and 

reliability of the built environment. 

 THESIS STRUCTURE 

1.5.1 Overview of the Thesis 

This thesis is structured to systematically address the research question and objectives 

outlined above. Each chapter builds on the findings of the previous ones, creating a cohesive 

narrative that leads to a comprehensive understanding of the integration of predictive modeling 

techniques into structural design. 

Chapter 2: Literature Review and Theoretical Framework 

This chapter provides a detailed review of the existing literature on predictive modeling, 

structural design, and sustainability in concrete structures. It sets the theoretical foundation for 
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the thesis, identifying key concepts, methodologies, and gaps in the current research that this 

study aims to address. 

Chapter 3: Mathematical Optimization Model 

This chapter details the development of a mathematical optimization model for 

reinforced concrete. While this chapter serves as the starting point for the research, it also 

provides essential insights and data that inform the development of predictive models in 

subsequent chapters. 

Chapter 4: Predictive Modeling Techniques 

This chapter explores the development and validation of predictive models, focusing on 

their application in structural engineering. It discusses the methodologies used to create these 

models and how they are validated using empirical data. 

Chapter 5: Integration into Design Process 

This chapter examines how predictive models can be integrated into the structural 

design process. It discusses the challenges of integration, the methodologies developed to 

address these challenges, and the potential benefits of using predictive models in design 

practice. 

Chapter 6: Case Studies and Experimental Validation 

This chapter presents case studies and experimental results that validate the 

effectiveness of the integrated predictive models. It provides practical examples of how these 

models can be applied in real-world scenarios and assesses their performance in terms of 

structural integrity and durability. 

Chapter 7: Discussion and Synthesis 

This chapter synthesizes the findings from the previous chapters, discussing their 

implications for the field of structural engineering. It explores the broader impact of the research 

and suggests potential directions for future studies. 

Chapter 8: Conclusion 

The thesis concludes by summarizing the key findings, addressing the research question, 

and proposing recommendations for further research. This chapter also reflects on the 

limitations of the study and discusses how the research could be expanded in future work. 
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1.5.2 Interconnectedness of Chapters 

The chapters of this thesis are interconnected, each contributing to the overall narrative 

and research objectives. Chapter 3 serves as the foundation, introducing key concepts and 

methodologies that are further developed in Chapters 4 and 5. Chapter 6 provides empirical 

validation of the predictive models discussed in Chapters 4 and 5, while Chapter 7 synthesizes 

the findings to offer a broader perspective on the research question. The final chapter, Chapter 

8, ties everything together, providing a comprehensive conclusion to the thesis. 

This interconnectedness ensures that the thesis is cohesive, with each chapter building 

on the work of the previous ones. The progression from optimization to predictive modeling 

and integration reflects the natural evolution of the research, culminating in a comprehensive 

understanding of how predictive modeling techniques can enhance the long-term performance 

of reinforced and prestressed concrete structures. 

 CONCLUSION 

This introductory chapter has established the foundation for the research presented in 

this thesis. It has provided a general background on the challenges of structural design and the 

potential of predictive modeling techniques to address these challenges. The chapter has also 

identified the scientific gap that this research aims to fill, articulated the research question, and 

outlined the objectives of the study. 

In addition, this chapter has explained the role of Chapter 4 in the broader context of the 

thesis, demonstrating how the initial work on mathematical optimization models informed the 

development of more advanced predictive models. Finally, the chapter has provided an 

overview of the thesis structure, highlighting the interconnectedness of the chapters and the 

progression of the research. 

The next chapter, Chapter 2, will build on the concepts introduced here by providing a 

comprehensive review of the existing literature. This literature review will identify key theories, 

methodologies, and gaps in the current research, setting the stage for the development of the 

predictive models and integration frameworks discussed in the subsequent chapters. 
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2 LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

 INTRODUCTION 

The field of structural engineering has witnessed significant advancements over the past 

few decades, particularly in the areas of predictive modeling and the application of standard 

codes and empirical data. These developments have enhanced the ability of engineers to design 

structures that not only meet current performance standards but also anticipate and mitigate 

potential long-term issues. However, the integration of these advancements into a cohesive 

framework for structural design remains a challenge. This chapter provides a comprehensive 

review of the existing literature on predictive modeling techniques, the use of standard codes 

and empirical data in structural design, and the theoretical frameworks that support the 

integration of these approaches. 

The purpose of this literature review is twofold. First, it aims to establish a theoretical 

foundation for the research by summarizing key contributions in the fields of predictive 

modeling and structural engineering. Second, it seeks to identify gaps in the current literature 

that this research will address, particularly in the context of enhancing the long-term 

performance of reinforced and prestressed concrete structures through the integration of 

predictive models. 

The scope of this review includes an examination of used predictive modeling 

techniques in structural engineering, with a focus on their application to concrete structures. It 

also covers the role of standard codes in guiding design practices and the ways in which 

empirical data is utilized to refine these models. The chapter concludes with the presentation of 

a theoretical framework that integrates these elements, setting the stage for the research 

presented in subsequent chapters. 
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 PREDICTIVE MODELING IN STRUCTURAL ENGINEERING 

2.2.1 Overview of Predictive Modeling Techniques 

Predictive modeling has become an essential tool in structural engineering, providing a 

means to simulate the behavior of structural elements under a wide range of conditions. These 

models and equations are particularly valuable in the design of reinforced and prestressed 

concrete structures, where the complexity of material behavior under stress and environmental 

conditions can be difficult to predict using traditional methods, especially when dealing with 

the nuances of different materials, such as Recycled Aggregates Concrete (RAC). The inherent 

variability and uncertainty in the properties of RAC, for instance, pose significant challenges 

to conventional design approaches, making predictive modeling an indispensable asset in 

ensuring accurate and reliable structural performance assessments for new material variations. 

The development and adaptation of predictive models in structural engineering have 

been driven by advances in computational methods, such as finite element analysis (FEA) and 

machine learning, which allow for the detailed simulation of structural behavior. Finite element 

analysis (FEA) has long been an important tool for predictive modeling in structural 

engineering. FEA divides a complex structure into smaller, more manageable elements, each 

of which is analyzed individually. The results are then synthesized to provide an overall 

prediction of the structure's behavior under various loads and conditions. FEA has been 

particularly useful in modeling the behavior of concrete structures, allowing engineers to 

predict how these structures will respond to factors such as load distribution, thermal expansion, 

and material degradation over time [1]. 

In recent years, the application of machine learning techniques in structural engineering 

has gained traction. Machine learning models can analyze large datasets to identify patterns and 

correlations that may not be immediately apparent through traditional analysis methods. These 

models are particularly well-suited to predicting the long-term performance of structures, as 

they can incorporate data from a wide range of sources, including environmental monitoring, 

material testing, and historical performance data. By training machine learning models on 

empirical data, engineers can develop predictive tools that are not only accurate but also 

adaptable to a variety of conditions [2]. 

Other computational methods, such as neural networks and genetic algorithms, have 

also been explored for their potential to enhance predictive modeling in structural engineering. 
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Neural networks, for instance, are capable of processing complex, nonlinear relationships 

within data, making them particularly useful for modeling the behavior of materials like 

concrete, which can exhibit highly variable properties under different conditions. Genetic 

algorithms, on the other hand, are optimization techniques that mimic the process of natural 

selection, allowing engineers to identify the most effective design solutions from a range of 

possibilities [3]. 

As predictive modeling techniques continue to evolve, they offer increasingly 

sophisticated tools for structural engineers. However, the integration of these models into the 

design process presents several challenges, particularly when it comes to ensuring that the 

models are both accurate and practical for use in real-world applications. The following sections 

will explore how these models have been applied in structural engineering and the challenges 

associated with their use. 

2.2.2 Applications of Predictive Models 

The application of predictive models in structural engineering has expanded 

significantly, particularly in the design and analysis of reinforced and prestressed concrete 

structures. These models are employed across various stages of the structural design process, 

from initial concept development to detailed analysis and optimization. One of the primary 

advantages of predictive modeling is its ability to simulate complex interactions within a 

structure, enabling engineers to anticipate potential issues before they manifest in the physical 

world. 

In the context of reinforced concrete structures, predictive models have been 

instrumental in assessing the performance of materials under various loading conditions. For 

instance, finite element models are frequently used to simulate the behavior of concrete under 

compression, tension, and shear, providing insights into how these materials will perform when 

subjected to different stressors. These models are particularly valuable in identifying areas of 

potential weakness within a structure, allowing for targeted reinforcement and optimization 

efforts [4]. 

For prestressed concrete, predictive models play a crucial role in understanding the long-

term effects of prestressing forces on structural integrity. By simulating the distribution and 

evolution of these forces over time, engineers can predict how a prestressed structure will 

behave under service conditions, including the effects of creep, shrinkage, and relaxation of the 



35 
 

prestressing tendons [5]. This predictive capability is essential for ensuring that prestressed 

structures maintain their desired performance characteristics throughout their intended lifespan. 

The use of predictive models is not limited to traditional materials like standard 

reinforced concrete. As mentioned earlier, the integration of Recycled Aggregates Concrete 

(RAC) into structural design introduces additional complexities that can be effectively managed 

through predictive modeling. The variability in the properties of recycled aggregates, such as 

differences in particle size distribution, strength, and durability, can significantly impact the 

performance of RAC. Predictive models enable engineers to simulate these variations and their 

effects on the overall structural behavior, thereby facilitating the development of more reliable 

RAC-based designs [6]. 

Machine learning models have also found increasing application in structural 

engineering, particularly in the prediction of material properties and structural performance. By 

analyzing large datasets, these models can identify trends and correlations that may not be 

immediately apparent through conventional analysis methods. For example, machine learning 

algorithms have been used to predict the compressive strength of concrete based on a range of 

input variables, such as mix proportions, curing conditions, and aggregate types. These 

predictions can then be used to optimize the concrete mix design, ensuring that the final product 

meets the required performance criteria [7]. 

In addition to material properties, predictive models are also applied to assess the overall 

structural response to external factors, such as environmental conditions and load variations. 

For instance, models that simulate the impact of temperature fluctuations, humidity, and 

chemical exposure on concrete structures are essential for predicting long-term durability and 

service life. These models help engineers design structures that are resilient to the 

environmental conditions they will face over time, thereby reducing the likelihood of premature 

failure and the associated maintenance costs [8]. 

The application of predictive models extends beyond individual structures to larger 

systems, such as infrastructure networks and buildings subjected to seismic activity. In such 

cases, predictive models are used to assess the vulnerability of these systems to natural disasters, 

enabling engineers to design structures that are better equipped to withstand seismic forces. By 

incorporating data from past earthquakes and advanced simulations, these models can provide 

valuable insights into the behavior of structures during seismic events, informing design 

decisions that enhance safety and resilience [9]. 
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2.2.3 Challenges and Limitations 

Despite the advancements in predictive modeling, several challenges and limitations 

remain in their application to structural engineering. One of the primary challenges is the 

inherent complexity of accurately modeling the behavior of concrete, particularly when dealing 

with non-homogeneous materials like Recycled Aggregates Concrete (RAC). The variability in 

material properties, coupled with the complex interactions between different components 

within a structure, makes it difficult to develop models that are both accurate and generalizable 

across different scenarios [10]. 

Another significant challenge is the integration of predictive models into the design 

process. While these models offer valuable insights, their practical application in real-world 

engineering projects can be limited by factors such as computational complexity, the 

availability of accurate input data, and the need for specialized knowledge to interpret the 

results. Engineers must balance the need for detailed, accurate models with the constraints of 

time, budget, and available resources, which can lead to compromises in the level of detail or 

the scope of the models used [11]. 

Moreover, the accuracy of predictive models is heavily dependent on the quality of the 

input data. In many cases, the data required to develop and validate these models may be 

incomplete, outdated, or subject to significant uncertainty. This is particularly true for models 

that rely on empirical data from past projects, where variations in construction practices, 

environmental conditions, and material properties can introduce significant variability into the 

data. Ensuring the reliability and relevance of the data used in predictive modeling is therefore 

a critical concern for engineers [12]. 

The use of machine learning and other advanced computational techniques in predictive 

modeling also presents challenges related to transparency and interpretability. While these 

models can provide highly accurate predictions, they are often treated as "black boxes," with 

limited insight into how specific input variables influence the output results. This lack of 

transparency can make it difficult for engineers to trust the results of these models, particularly 

when they deviate from traditional engineering intuition or established design practices [13]. 

Finally, there is the challenge of validating predictive models against real-world 

performance. While simulations and laboratory tests can provide valuable data for model 

validation, the true test of a model's accuracy lies in its ability to predict the behavior of 

structures over time in real-world conditions. This requires long-term monitoring and data 

collection, which can be resource-intensive and logistically challenging. Without adequate 
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validation, the predictive power of these models may be limited, reducing their utility in 

practical engineering applications [14]. 
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3 METHODOLOGY 

 INTRODUCTION 

This chapter outlines the research methodology employed in this study, which integrates 

empirical testing, data collection, and machine learning techniques to develop and refine 

predictive models for the structural design of reinforced and prestressed concrete structures. 

The methodology is designed to systematically address the research question posed in Chapter 

1, focusing on enhancing the long-term performance of these structures through a combination 

of experimental data and advanced computational models. 

This study employs a methodology that integrates empirical testing, data collection, and 

machine learning to enhance the structural design of reinforced and prestressed concrete. The 

research begins with the selection of materials, including traditional concrete and recycled 

aggregate concrete (RAC), and the preparation of test specimens, such as beams and bridge 

consoles, subjected to confining stresses and various loading conditions. Real-time data 

collection during testing captured critical stress-strain responses, which were validated and 

analyzed to generate stress-strain curves, assess failure modes, and compare the performance 

of RAC with traditional concrete. These insights informed the refinement of structural designs, 

particularly for sustainable construction. 

Machine learning models, particularly Random Forest, were employed to predict 

structural behavior using the collected data. After training and validation, the models 

demonstrated strong predictive accuracy, outperforming traditional models in predicting stress-

strain behavior and failure modes. New predictive equations were developed from these models 

and validated against empirical data, then integrated into the structural design process. 

Comparative analysis with existing design codes and real-world validation confirmed the 

reliability of these models, leading to recommendations for their adoption in industry practices 

and potential updates to design standards. 
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Figure 3.1 – Sequence of methodology publications highlighting their key contributions to the 
thesis. 

 SPECIMEN TESTING 

3.2.1 Material Selection 

Reinforced and Prestressed Concrete: The study focuses on reinforced and 

prestressed concrete structures, with an emphasis on understanding how different structural 

approaches, behave under various stress conditions. 

Recycled Aggregates Concrete (RAC): Particular attention is given to RAC due to its 

increasing use in sustainable construction practices. The variability in RAC properties 

necessitates thorough testing to understand its structural performance. 

3.2.2 Test Specimen Preparation 

Specimen Types: The specimens used in this study includes structural bridges consoles, 

such as flat, single-keyed, and three-keyed RAC dry joint specimens, and also traditional 

reinforced and prestressed concrete beams. 

Dimensions and Configurations: The dimensions and configurations of the specimens 

were chosen based on standard testing protocols and tailored to investigate specific structural 

behaviors under stress. 

Curing and Conditioning: All specimens underwent standard curing processes, with 

additional conditioning applied to simulate various environmental exposure conditions relevant 

to real-world applications. 
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3.2.3 Testing Procedure 

Confining Stresses: Specimens were subjected to confining stresses ranging from 1.0 

to 3.0 MPa to simulate the conditions that occur in actual reinforced concrete structures. 

Loading Conditions: The specimens were tested under different loading conditions, 

including compression, tension, and shear, to evaluate their structural behavior 

comprehensively. 

Instrumentation and Data Acquisition: Advanced instrumentation, including strain 

gauges and load cells, was employed to capture real-time data on the stress-strain response of 

the specimens. The data acquisition system was calibrated to ensure accuracy and reliability in 

capturing the critical parameters. 

 DATA COLLECTION AND ANALYSIS 

3.3.1 Data Collection 

Real-Time Monitoring: During the testing phase, data was continuously monitored and 

recorded to capture the stress-strain behavior of the specimens under various loading 

conditions. 

Environmental Factors: Additional data was collected on environmental factors such 

as temperature and humidity, which can influence the performance of concrete materials. 

Data Validation: The collected data was subjected to rigorous validation procedures to 

ensure its accuracy and relevance for subsequent analysis. 

3.3.2 Analysis of Structural Behavior 

Stress-Strain Curves: The primary analysis involved generating stress-strain curves 

for each specimen to understand their mechanical behavior under different stress conditions. 

Failure Modes: The failure modes of the specimens were analyzed to identify critical 

weaknesses in the material or structural configuration. 

Comparative Analysis: A comparative analysis was conducted between RAC and 

traditional concrete specimens to evaluate differences in performance and identify areas where 

RAC may require additional reinforcement or design adjustments. 
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 INTEGRATION OF MACHINE LEARNING MODELS 

3.4.1 Model Development 

Model Selection: Several machine learning models were initially considered, including 

linear regression, neural networks, and support vector machines. After evaluating their 

performance, the Random Forest model was selected due to its superior ability to accurately 

predict structural behavior using the collected data. The Random Forest model’s robustness in 

handling complex interactions and its capability to provide reliable predictions made it the most 

suitable choice for this research. 

Training and Testing Data: The dataset was split into training and testing sets to 

evaluate the performance of the models. The training data was used to develop the models, 

while the testing data was used to assess their predictive accuracy. 

Feature Engineering: Key features were extracted from the raw data, such as material 

properties, stress levels, and environmental factors, to improve the models' predictive 

capabilities. 

3.4.2 Model Training and Validation 

Hyperparameter Tuning: The models were fine-tuned using hyperparameter 

optimization techniques to enhance their performance. 

Cross-Validation: Cross-validation was employed to assess the generalizability of the 

models and prevent overfitting. 

Model Evaluation: The models were evaluated based on metrics such as mean squared 

error (MSE), R-squared, and predictive accuracy to determine their effectiveness in predicting 

the structural behavior of the specimens. 
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 PREDICTIVE ACCURACY AND FEATURE IMPORTANCE ANALYSIS 

3.5.1 Predictive Accuracy 

Performance Metrics: The predictive accuracy of each model was assessed using 

standard performance metrics, with a focus on how well the models predicted the stress-strain 

behavior and failure modes observed in the empirical tests. 

Comparison with Traditional Models: The performance of the machine learning 

models was compared with traditional predictive models to evaluate any improvements in 

accuracy and reliability. 

3.5.2 Feature Importance 

Identification of Key Features: The models were analyzed to identify which features 

(e.g., material properties, environmental factors) had the most significant impact on the 

predictive accuracy. 

Interpretability of Results: Efforts were made to enhance the interpretability of the 

machine learning models, ensuring that the key features identified align with engineering 

intuition and established knowledge. 

 MODEL EVALUATION AND COMPARATIVE ANALYSIS 

3.6.1 Model Evaluation 

Real-World Validation: The predictive models were validated against real-world 

performance data where available, ensuring their applicability in practical engineering 

scenarios. 

Sensitivity Analysis: Sensitivity analysis was conducted to understand the robustness 

of the models under different conditions and to identify any limitations. 
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3.6.2 Comparative Analysis 

Comparison with Standard Codes: The newly developed or refined predictive 

equations were compared with existing standard codes to assess their reliability and potential 

for adoption in the industry. 

Case Studies: Specific case studies were analyzed to demonstrate the practical 

application of the models in real-world structural design. 

 EQUATION DEVELOPMENT 

3.7.1 New Equation Formulation 

Equation Derivation: Based on the insights gained from the machine learning models 

and empirical data, new equations were derived to predict structural behavior more accurately. 

Validation Against Empirical Data: The new equations were validated against the 

empirical data to ensure their accuracy and reliability. 

3.7.2 Integration into Design Practice 

Application to Structural Design: The newly developed equations were integrated into 

the structural design process, offering a more precise tool for engineers in designing reinforced 

and prestressed concrete structures. 

Recommendations for Industry Adoption: Recommendations were provided for how 

these equations could be adopted by the industry, including potential updates to existing design 

codes. 

 METHODOLOGY SCHEMA 

To provide a clear and concise overview of the methodology employed in this study, the 

following schema illustrates the key steps and processes involved in the research. This visual 

representation encapsulates the integration of empirical testing, data collection, machine 
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learning model development, and the derivation of new predictive equations within the 

structural design process. 

 

Figure 3.2 - Overview of the research methodology employed in this study, highlighting the 
sequential steps from specimen testing through to equation development and integration into 

design practice. 
 

Chapter 4 delves into this foundational shift by introducing a mathematical optimization 

model specifically designed for the efficient detailing of reinforced concrete. This model 

represents a departure from traditional continuous optimization techniques, instead utilizing 

discrete optimization to accurately address the complexities of real-world structures. The 

chapter explores the development and application of this model, setting the stage for its 

influence on subsequent research presented in this thesis. 
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4 A MATHEMATICAL OPTIMISATION MODEL FOR THE DESIGN AND 

DETAILING OF REINFORCED CONCRETE BEAMS 

This chapter is published as an original research article in Engineering Structures.  

https://doi.org/10.1016/j.engstruct.2021.112861 
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ABSTRACT 

An evolutionary metaheuristic optimization model for sizing reinforced concrete beams 

is presented. The proposed optimization model transcends ones in the literature as it is able to 

consider characteristic concrete strength (fck), cross-section area and reinforcement bars’ 

diameters as discrete design variables, thus representing a more realistic model. The goal is to 

minimize construction costs via configuring cross-sectional dimensions, determining 

reinforcement layouts, and defining fck. The design constraints formulated in the mathematical 

model proposed are related to structural integrity, considering ultimate limit state, serviceability 

limit state, and good construction practices. A finite element method program was developed 

to obtain the stresses and strains of beams, geometries, and load forces. Additionally, a 

longitudinal reinforcement database generator was developed, ensuring that the reinforcement 

layouts generated are within codes of practice. A Genetic Algorithm was adopted to solve the 

resulting optimisation problem. Results of case studies demonstrate that the cost variance 

implications are directly related to the reinforcement detailing arrangements, with 3.63% to 

17.07% improvements in costs that are achieved when compared with other studies in the 

literature. 

 

Keywords: 

Continuous beams; Structural optimization; Reinforced concrete; Genetic algorithm. 

 INTRODUCTION 

In building and infrastructure construction, rational use of the mechanical characteristics 

of materials enables the development of more efficient and economical structures. Concrete 
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usage worldwide is very significnat in the existing building stock. Its usage level is estimated 

to be three tonnes per year for every person around the world [41]. Given that concrete is 

relatively an expensive material, with many environmental impacts, it is wise to ensure 

optimized section areas of structural concrete components.  

In recent years, the multi-story building construction market has required lighter and 

more mechanically efficient reinforced concrete structures [20]. Beams are linear structural 

elements widely adopted in multi-story buildings to resist load applied axially to the structure 

[2]. Structural beams can be classified mainly as simply supported or continuous beams. Simply 

supported beams have exactly one span. Continuous beams extend beyond one span, with 

several supports that may vary. Continuous beams may contain primary and secondary 

reinforcement aimed at counteracting positive and negative bending moments in critical cross-

sections. A simplified example of a continuous beam is illustrated in Fig. 4.1.  

In Fig. 4.1, Li is the distance between supports, Si denotes support identification, wi 

support width, h beam height, bw beam width, and tslab height.  

The design of continuous beams contains several critical sections that must be 

dimensioned considering their respective particularities [19]. For a one-span clamped beam on 

supports, there is a critical section on the left, mid and right spans, where negative bending 

moments at the supports are dominant. Thus, it is important to define the cross-section 

dimensions, the number of bars and layers (reinforcement template), and the best characteristic 

strength of concrete (fck) for each critical section to counteract the bending moments that result 

[5].  

Rules of thumb adopted by structural designers, such as beam height being 10% of the 

span length of simply supported beams, or the biggest span length divided by 12 for continuous 

beams, along with pre-design techniques that are commonly practiced by structural designers 

worldwide, have not kept pace with the evolution of modern computational tools. Such pre-

design techniques are outdated and inefficient, as they generally do not consider structural costs 

[14]. 

Figure 4.1 - Representation of heat flow in a building and with its energy system 
for a given structural problem, where the design constraints imposed are fully satisfied. 

In the literature, common approaches include the use of optimization to structural purposes. For 
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instance, [27] outlined an application of genetic algorithm based strategies to a class of 

optimization tasks associated with the design of steel reinforced concrete structures, though the 

authors did not consider layer limitations and doubly reinforced solutions. [31] developed a 

methodology to optimize building frames based on minimum embedded CO2 emissions; the 

design involved optimization via a simulated annealing (SA) algorithm, and the calculation 

method were simplified, without optimizing steel bar allocation. [40] developed a methodology 

based on a multi-objective optimization technique that incorporates the performance-based 

seismic design methodology of concrete building structures, though the authors did not consider 

serviceability limits in the optimization process and did not optimize reinforcement selection 

layouts. [39] employed GA with constraints on the mechanical properties of reinforced concrete 

beams under different load combinations and limited by code restrictions, but did not optimize 

concrete strength nor reinforcement selection layout. These limitations are addressed in this 

study.  

The optimization model presented herein aims to minimize the fabrication cost of beams 

following [2] construction guidelines for ultimate limit state analysis and [1] for serviceability 

limit state analysis. To generate realistic models, discrete design variables are used, such as 

commercial diameters and the number of longitudinal steel reinforcement bars. Additionally, 

the height and width of beams and the characteristic strength of concrete (fck) are considered 

as discrete design variables. The inclusion of fck as a discrete design variable rather than a 

known amount is one of the highlights of the developed methodology since optimal concrete 

resistance may lead to more efficient mechanical designs.  

The design constraints considered in the optimization model are those proposed by the 

standard code of practice [2] and [1]. Thus, resistance and ductility constraints that satisfy the 

ultimate limit state (ULS) and restrictions related to deflection and durability required by the 

serviceability limit state (SLS) are considered. 

4.1.1 Literature review 

The literature contains several studies on the optimization of reinforced concrete beams, 

mostly related to simply supported beams, with few that focus on continuous beams. [22] 

developed a methodology for reinforced concrete optimization in continuous beams, comparing 

their results with those obtained by [23]. The optimization model considers cross-section height 

as a design variable. The authors used reinforcement tables for each beam cross-section. Thus, 
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reinforcement was not considered as a design variable but was determined from the smallest 

steel area available from the database related to the current cross- section. The design 

constraints were the ULS conditions, and GA was used as the optimization algorithm.  

[26] developed an optimization methodology for a reinforced concrete system of 

columns and beams. They constructed a database containing the cross-sections of pre-

established beams and columns. Dynamic programming was used to find the most economical 

section within the pre-defined database in the optimization process. The objective was to find 

a preliminary design of RC frame structures, yet the method goal was not to find global optimal 

solutions, but rather improved solutions.  

[7] presented a method for the structural optimization of reinforced concrete beams on 

a minimal cost problem. The design variables were neutral axis (x) height and reinforcement 

area (As), both defined as continuous variables. The authors used a classical mathematical 

programming algorithm based on the Kuhn-Tucker (KKT) optimality condition. Singly and 

doubly reinforced sections were analyzed separately.  

[3] proposed a methodology using GA to find the optimal cost of RC prestressed simply 

supported beams, according to the ACI 318-05. The design variables considered were width, 

depth, number of flexural bars, diameters of flexural bars, number and diameters of tendons of 

the beam, and the eccentricity of the tendons. No SLS or reinforcement detailing was 

performed.  

[17] developed a methodology to optimize cross-sections of columns submitted to 

bending, considering the materials’ non-linearity. The technique sought an optimal solution 

within a predetermined database of possibilities, aided by genetic algorithms. The author used 

the finite element method (FEM) to obtain the displacements of the elements analyzed.  

[15] studied RC structures’ design, such as beams and columns, considering the Indian 

Standards and using the enhanced Particle Swarm Optimization (PSO) algorithm. The study’s 

objective was to get the optimal cost of these structures. RC beams had been designed assuming 

that the independent design variables were the beam width and depth; other design parameters 

were calculated accordingly. No doubly reinforced sections were analyzed in the study.  

[38] Presented an optimum design of reinforced concrete beams using metaheuristic 

methods. The optimization method utilised the harmony search algorithm (HS) and proved to 

be effective in solving the problem via several random stages. The proposed method was tested 

for two-story, two-span RC frames. The results show that metaheuristic- based methodology is 

feasible but presented no mentioning of SLS and ULS.  
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According to [35], the complexity of the RC beams design optimization problem had 

led to many oversimplified models in the literature, as current metaheuristic search algorithms 

cannot deal with the design problem efficiently. The authors instead proposed new design 

variables, such as cutoff steel and percent of positive and negative bending cutoff steel, along 

with a new parameter-setting-free harmony search algorithm. The optimization objectives were 

to minimize the total cost, total weight, and the cost/weight simultaneously for designing 

concrete beams. The final results came up with optimal reinforcement detailing.  

[24] analyzed a sustainable design of reinforced concrete frames with non-prismatic 

beams. The relation between optimal cost and optimal carbon dioxide emission was analyzed. 

The objective functions minimized the CO2 emissions and construction cost, and the design 

variables were defined as the cross-section geometry and reinforcing bars of beams and 

columns. The performance of five optimization algorithms was compared for the proposed 

methodology. No realistic detailing was proposed, nor SLS constraints were implemented.  

[25] presented a standardized formulation procedure for the cost- safety optimization 

of the steel–concrete composite beam (SCCB). A sensitivity analysis was performed to 

investigate the influence of design parameters of the steel profile. The results obtained indicated 

that the standardized formulation has the appropriate capability to yield significant savings on 

cost and improve the safety of SCCB regarding steel beams.  

Some works present the relations of doubly reinforcement as part of the optimization 

process, including [8] and [18] who developed methodologies considering doubly 

reinforcement predefined cases. [9] developed the previous methodology, and [36] followed a 

similar methodology but applied Particle Swarm Algorithm. In these works, all reinforcement 

(single and doubly) needed were calculated after the optimization process of choosing the beam 

cross-section. In this way, the optimization process tries only different cross-sections and not 

different reinforcement layouts. The approach thus does not have the freedom to try doubly 

reinforcements as the top reinforcement are not independent design variables. This limitation 

fails to find solutions in which doubly reinforcement are enforced, as determined by the 

standard calculation code design proposed by [2] and demonstrated in Fig. 4.2.  

Three studies were taken into account when the proposed methodology was developed 

for this study, namely [5], [30] and [38]. The main idea behind these three works is that they 

proposed an adaptation of real structures to fit an optimization model. [5] and [38] presented a 

feasible way to approach optimization in High-rise buildings structures while [30] came up with 

different load geometry applied over beams. None of the previous studies however presented a 

realistic reinforcement detailing solution nor SLS constraints.  
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The presented literature handled the problem of designing reinforced concrete members 

by simplifying and ignoring the complexity of strucutral design, such as doubly reinforcement 

solution verifications, as well as calculating required steel reinforcement after cross-section 

definition. This approach disallows the optimization process to try uncommon or unexpected 

layouts, losing some possible optimal solutions and never finding doubly reinforcement 

solutions. 

4.1.2 RESEARCH SIGNIFICANCE 

The design of reinforced concrete structures using optimization methods represents a 

major challenge [29]. This is because concrete structures are composite materials with many 

calculation factors presented in standard codes. This is not the case when steel or masonry is 

adopted as the main structural material in the building. Another degree of difficulty is providing 

optimal designs that are detailed enough to be easily adopted and applicable to reality, and in 

accordance with international codes, manuals and recommendations [12,10]. 

For reinforced concrete structures, simplification must be wisely applied since missing 

parameters, such as deformation domains of concrete structures, can result in non-optimal 

solution, along with disregarding solutions that could have been optimal. For instance, 

disallowing double reinforcement in the calculation process because of its recursive calculation 

nature would be easier to implement but would not represent real projects. In general, doubly 

reinforced concrete sections drag the neutral axis of beams near the centre of the beam and grant 

better overall resistance to beams. Depending on the region’s steel cost, the optimization 

considering the reinforcement bars as design variables can reach cheaper results with double 

reinforcement compared to a single reinforcement section. In this situation, an algorithm that 

does not consider the reinforcement bars as a design variable will not find optimal solutions. 
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Figure 4.2 - Doubly reinforcement with top reinforcement collaboration [2]. 
 

Till date, the most widespread design software used for reinforced concrete structures 

does not include an improved optimization technique to establish characteristics such as 

reinforcement layout, crosssection length, or properties, such as concrete strength of structural 

elements. It is possible that such an important improvement is not implemented because the 

structural optimization methods available are not usable in realistic projects. 

The base parameters and assumptions related to optimization reinforced concrete beams, 

such as ACI requirements (steel and concrete limit ratio, deflection limit, crack opening limit, 

neutral axis depth limits, clear spacing limits between stirrups and others), and a wider diversity 

of design variables limitations, such as maximum number and usage of different diameters of 

steel bars, width, and height limits of beams, were not well implemented in previous studies. 

In the present study, a new computational methodology is proposed for the optimization 

of the geometrical sizing of reinforced concrete continuous beam sections, accounting for 

commercial diameters for reinforcing steel bars and different concrete strengths, while 

complying with the latest American Concrete Institute code requirements for both resistance 

and serviceability conditions. Discrete variables were used to better represent realistic 

structures since the output of the structural design process is usually determined not as steel 

area and not as continuous widths and heights, but as discrete numbers of bars in discrete 

stepped sizes (15 cm, 20 cm, 25 cm instead of 17.48 cm for instance). A wide range of 

reinforcement possibilities are defined for the critical sections of beams in this study. A 



52 
 

reinforcement database is generated within a computational module developed based on codes 

requirements, which defines and stores hundreds of realistic steel reinforcement possibilities 

that satisfy geometric restrictions, according to [2]; this database is automatically generated in 

the initial steps of the optimization process. A FEM program is also designed to obtain the stress 

and strains on critical sections of continuous beams, with different geometries and load forces 

applied; here, load combinations as described in [2] and [1] are considered. The FEM was 

implemented following the CALFEM [6] program. The bending moment redistribution is 

performed as recommended in [2] and [1]. Second, a GA method is developed, generating 

various populations with realistic solution candidates that utilize as input the boundary 

conditions, commercial material properties, and structural information as spans sizes and 

applied loads. According to [4], optimization using GA exhibits satisfactory computational 

performance and robustness; it has high capability in determining the global minima, along with 

dealing with discrete, continuous, and mixed design variables, as [21] subsequently confirmed. 

Third, the solutions are generated and analyzed iteratively, which leads to better candidates, 

that converge to optimal solutions. 

The analyses that are described in the next sections are well implemented in the 

proposed method, enabling the consideration of several reinforced concrete verifications, 

without core modifications to real-life scenarios. This enables realistic reinforcement design to 

be generated. 

 

4.1.3  Reinforced concrete optimization framework  

Computational codes were developed to carry out the optimization process and all 

verifications needed for concrete beam structures. Fig. 4.3 displays a flowchart of the entire 

optimization process. 
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Figure 4.3 - Flowchart of the computational method developed. 

 

 REINFORCEMENT MODEL DETAILING WITHIN THE DATABASE 

GENERATOR 

The optimization model proposed here considers RC beams’ particular characteristics, 

such as geometry, steel reinforcement, concrete strength, loading, and support conditions as 

presented in RC beam entries step in Fig. 4.3. 

Initially, a general optimization method that is similar to the existing literature may 

present issues when many constraints are assigned. The usage of correlated constraints can limit 

the systematic optimization search, slows the optimization algorithm, and limits the range of 

possible solutions. As such, a different approach was adopted in this study. Specifically, an 

algorithm was created separate from the constraints, in order to generate reinforcement detailing 

solutions that comply with requirements and boundary conditions [2]. These detailing solutions 

were then stored in a structured database. The algorithm is easily updated for different standard 

code requirements. Table 4.1 is presented to summarise all the notation adopted throughout the 
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study. It is important to note that the usage of the created database generator algorithm for every 

chromosome is not recommended, since it may complicate the selection of the needed 

reinforcement layout and may mislead the fitness function. The algorithm generates a 

comprehensive database based on the most common possibilities of reinforcement templates in 

a beam structure, considering the maximum dimensions for setting the highest number of 

reinforcement possibilities. As a result, any reinforcement template requested by the 

optimization process is contained in the database. After that, the database is sorted by the total 

steel area (in Database Generation within the Setup Stage of Fig. 4.3). The optimization process 

may use all the possibilities for the design pre-set, allowing the GA to penalize solutions that 

do not follow the reinforcement allocation constraints. The reinforcement allocation 

requirements were implemented with three constraints, being Sh, Sv, and α (as presented in 

Decoding of discrete design variable from database & Longitudinal bar detailing in Step 2 of 

Fig. 4.3). Furthermore, depending on the designer region (standard code limitations), the 

designer may set up the database generator algorithm to only use one reinforcement diameter 

or one diameter for each layer or even let the optimization process completely mix 

reinforcement diameters in all layers. 

For continuous beams, the database generator defines the reinforcement in critical 

sections by generating possible reinforcement layouts in these sections. The critical sections are 

important since they represent maximum bending moments at different regions of the beam. 

The reinforcement in critical sections defines the longitudinal reinforcement template for 

continuous beams. Critical sections’ locations for a simply supported beam are shown in Fig. 

4.4, and the number of commercial steel bars and reinforcement layers with their corresponding 

positions, can be seen in Fig. 4.5. 

The main terms defined in the algorithm are represented in Figs. 6 and 7. 

Reinforcements in critical sections are restricted by code rules, such as [2], and may 

contain: 

 

• Maximum number of reinforcement layers; 

• Maximum number of bars per layer (for the present study, the maximum number 

that can be used in each layer, if it complies with Sv, Sh, and α; 

• Each layer must contain bars with the same commercial diameter 

(gauge); 

• Minimum and maximum clear horizontal and vertical spacing between bars; 

• Clear side cover 
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In accordance with steel bars commercialized in Brazil and Australia, the following 

commercial gauges for longitudinal reinforcements were considered: 6.3, 8, 10, 12.5, 16, 20, 

22.5, 26, 32mm. 

Fig. 4.6 presents a simplified reinforcement layout creation that is developed 

automatically, independent of the RC cross-section beam, by the database generator that will 

be discussed later in this section. 

Looking at Fig. 4.6, the database generator algorithm works as follows: To create 

reinforcement templates, each reinforcement possibility is created with the addition of a new 

reinforcement bar. The algorithm starts by creating the first template with two of the minimal 

reinforcement diameters and keeps adding reinforcement bars until all the possibilities 

constrained by codes are created. This addition of bars continues to the next layer if the distance 

Sh allows it, and if the total steel area of the previous layer is greater than or equal to the total 

steel area of the next layer, as limited by code and the alpha (α) limits imposed. The database 

generation demonstrated in Fig. 4.6 is showing the generation of a reinforcement template, 

starting with bars of 12.5 mm. For example, the following information would be required before 

continuing to generate the reinforcement database proposed in Fig. 4.6. 

 

Table 4.1 - Notations and symbols used in the proposed optimization model. 
Notation Description Notation Description Notation Description 

bw Beam width (cm) Csc Concrete section cover (cm) βx Ductility parameter 

h Beam height (cm) CG Center of gravity (cm) x Neutral axis (cm) 

Asi Steel area (cm2) Smax Maximum horizontal clear spacing 
(mm) 

d Effective height of the beam (cm) 

fck Characteristic strength of fi Initial deflection (mm) fcd Design strength of concrete (MPa) 

 
t 

concrete (MPa) 

Slab height (cm) 
 

αf 
 

Deflection factor 
 

fi 

 
Initial deflection (mm) 

Li Distance between supports 
(cm) 

(EI)eq Equivalent resistance of the beam 
(GPa) 

Msd Design bending moment (kN.m) 

CC Concrete cost (depending on Mr Concrete cracking bending moment 
(kN.m) 

Mu Ultimate bending moment (kN.m) 

 resistance) ($/m3)     
CS Steel cost ($/kg) Ic Moment of inertia of the gross 

concrete 
wk Crack opening (mm) 

 
Cf 

 
Formwork cost ($/m2) 

 
σs 

section (kN.m) 

Tensile stress at the center of gravity 
of the 

 
Sh 

 
Horizontal clear spacing (mm) 

 
w 

 
Support width (cm) 

 
ρr 

considered bar gauge (MPa) 

Passive reinforcement ratio (%) 
 

Sv 
 

Vertical clear spacing (mm) 

τwd Shear design stress (Mpa) Asc Compressed steel area (cm2) nstir Number of stirrups 
τwd2 Shear resistance stress 

(MPa) 
Definf Deflection at an infinite time (mm) α Distance between total steel area and first layer 

steel area 
     (cm) 

Sstir Clear spacing between 
stirrups 

wkallow Crack opening limit (mm) dk Stirrup gauge size (mm) 

 
η1 

(mm) 

Reinforcement type 
 

Wt 
 

Transverse steel weight (kg) 
 

Vc 
 

Volume of concrete (m3) 

ηij Number of stirrups in shear 
region i of span j 

Ws Longitudinal and transverse steel 
weight (kg) d′ Effective depth from the top of a reinforced 

concrete beam to the centroid of the compression 
steel (cm) 

ρr Steel reduction factor Af Formwork area (m2) ft=∞ Final deflection (mm) 

ϕi Longitudinal bar gauge in L Span Length (cm) Ma Concrete bending moment of most requested 
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the serviceability 

 
ρs 

first layer (mm) 

Specific steel weight 
(kg/cm3) 

 
Ecs 

 
Concrete secant modulus of elasticity 
(GPa) 

 
III 

(kN.m) 

Part’s moment of inertia in stage II (kN.m) 

Es Modulus of elasticity of the δcracking Cracking limit (mm) Ast Tractive steel area (cm2) 
 steel bar (GPa)     

Deflimit Maximum deflection 
allowed 

x23 Neutral axis position of domain 2-3 
(cm) 

x34 Neutral axis position of domain 3-4 (cm) 

 (mm)     
Fd Ultimate combination case 

load 
γq Coeficient for variable loads Fgk Permanent direct load (kN) 

 
γg 

(kN) 

Coeficient for permanent 
loads 

 
ψ0ε 

 
Unstable variable indirect loads factor 

 
Fεgk 

 
Retraction action load (kN) 

γεg Coeficient for constructive Fεqk Temperature action load (kN) Fq1k Variable loads (kN) 

 
Fqjk 

loads 

Permanent indirect load 
(kN) 

 
ψ0j 

 
Unstable variable direct loads factor 

  

 

 

 

Figure 4.4 - Representation of critical sections positions in an RC beam. 
 

• Clear side cover (Csc): 30 mm; 

• Maximum number of reinforcement layers: as many as parameter α 

allows; 

• Minimum clear spacing required between bars, Sh and Sv: based on code 

provisions; 

• Maximum number of bars allowed in each layer: as many as Sh 

allows; 

• Possibilities for bar gauges in each layer: personal designer choice considering 

region commercial bars and workability with reinforcement bars. 
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Figure 4.5 - Schematic representation of terms, layers, number of bars, and gauges in a standard 

reinforced concrete beam used in the proposed approach. 
 

 

Figure 4.6 - Sample of the database generator process. 
 

 

Figure 4.7 - Example of reinforcement template possibilities database (MATLAB, 2016). 
 

To demonstrate how the Database Generator works, an example is given in Fig. 4.6. Fig. 

4.6A indicates the initial reinforcement template (two 12.5 mm bars in the first layer for this 
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example). In Fig. 4.6B, there is a geometrical impossibility of adding another 12.5 mm bar to 

layer 1, since Sh would be less than the minimum allowed by code. Then, the creation of a new 

layer starting with a 6.3 mm bar (since 6.3 mm bar is the smallest in the list of commercial 

gauges given by the user) and respecting the α limit is required. Then, in Fig. 4.6C, an addition 

of the second 6.3 mm bar in layer 2 creates a new reinforcement layout. In Fig. 4.6D, addition 

of the third 6.3 mm bar to layer 2, respects the condition: Asn ≤ Asn+1 and another 

reinforcement layout is created and stored in the database generated. 

Thus, respecting α limit, the spacing and steel area limits, the templates are generated 

according to current codes. 

According to international standard codes and best practices, the following constraints 

are applied [32,2]: 

 

• In the previous layer, the total steel area shall be greater than or equal to the next 

layer total steel area. 

• The number of bars for the bottom and top steel layer shall be greater than or 

equal to 2, for stirrup allocation purposes. 

• The distance between the centre of gravity (CG) of the first layer and CG of all 

layers (this distance is called α) shall be equal or less than 10% of the beam height (h). 

  

• Total steel area (bottom plus top plus lateral bars) shall be less than or equal to 

4% of the concrete cross-section (bw*h). 

• The steel area (bottom or top) shall be less than or equal to 50% of the secondary 

steel area for doubly reinforced limits. 

 

Considering the total number of longitudinal reinforcement possibilities generated in 

the database, the overall number of possible configurations for the longitudinal reinforcement 

template depends directly on the boundary conditions of the analysis. Each database position 

has different numbers and gauges in each layer. An example of the database generated by the 

proposed algorithm is presented in Fig. 4.7. As shown, the database is generated and stored as 

a three-dimensional matrix. Each line contains a complete reinforcement layout, and each cell 

represents information about its respective layer, such as the number of bars, bar gauge, total 

steel layer area, and the layer’s CG etc. The database is sorted by the total steel area. 

For instance, all the cells of the first line represent an entire reinforcement layout. The 

first line and first column cell contain the information of layer 1 of the first reinforcement 
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layout. These cells are organized as a structure of 4 fields as shown in Fig. 4.7. The entire line 

has information on all the layers of a respective reinforcement layout. All this data comprises 

the reinforcement layout database. The selection of the reinforcement layout is performed in 

the new population generation, shown in Fig. 4.3. 

4.2.1 Selection of the reinforcement templates 

The reinforcement template is selected from a database spreadsheet for each critical 

section. Each reinforcement is typically located on the left, mid, and right spans. The 

reinforcement bar layout for all critical sections generates a continuous beam model. The 

process of selecting reinforcement layouts is repeated for every span, creating the entire RC 

bream’s reinforcement detailing. 

4.2.2 Shear reinforcement 

In the form of vertical stirrups, shear reinforcements are determined by dividing the 

shear force envelope into three regions. An example of a shear envelope region is presented in 

Fig. 4.8. For each region, different spacing and gauges are tested. 

The optimized shear reinforcement module considers 5, 6.3, 8, 10, and 12.5 mm as 

commercial gauges. For each shear envelope region, the module starts from the first gauge (5 

mm) and proceeds to the verification code with 90-degree stirrups. The computer module finds 

the maximum and minimum spacing. The validation of the reinforcement for 90-degree stirrups 

is given by verifying if the shear force applied (Vsd) is greater than or equal to the shear force 

resistance of the section (Vrd), as can be obtained by Eq. (4.1). 

 

If the spacing exceeds the maximum allowed by code, the spacing is set as the maximum 

(same as spacing 2 from Fig. 4.8), and the region is considered reinforced. If the spacing is 

between the maximum and minimum allowed by the code (same as spacing 1 and 3 from Fig. 

8), the region is considered as reinforced. If the spacing is smaller than the minimum allowed 

by code, the computer module recursively tries the next gauge until it finds the optimal solution. 

If the horizontal spacing is smaller than the minimum and the gauge is set at 12.5 mm, the 

module returns a message indicating the configuration is impossible to design. Fig. 4.8 presents 
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an example of three reinforcements at their shear regions, using the method described above. 

After the detailing of vertical reinforcement, the proposed method calculates the total vertical 

reinforcement weight, as shown in Fig. 4.3 in the Objective Function steps. 

The optimization model considers the maximum and minimum spacing limits in the 

constraints function, along with the stirrup weight. Eq. (4.2) is used to calculate the vertical 

stirrup weight. Reinforcement layouts is repeated for every span, creating the entire RC bream’s 

reinforcement detailing. 

 

 

 
Figure 4.8 - Example of a beam with reinforcements of three shear regions, left, middle, and 

right. 
 

 OPTIMIZATION MODEL  

Formulating the optimal strctural design problem consists of identifying the design 

variables, the objective function (fobj), and constraints to be satisfied (gi(X) and hi(X)). The 

fobj shall be optimised, subject to satisfying the equality and inequality constraints gi(X) hj(X) 

respectively, and within the lower (Xl) and upper boundaries (Xu) of the problem, as can be 

seen in Eqs. (4.3)–(4.5). 
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Where m and p are the number of equality and inequality design constraints, 

respectively; l and u the lower and upper bounds of design variables, and n is the current design 

variable. 

The structural optimization problem formulated in this study aims to minimize beam 

fabrication cost, while obtaining realistic designs. The constraints are formulated based on 

serviceability and ultimate limit strength constraints, along with structural designers’ 

preferences, following standard codes’ prescriptions. The solution optimizes the reinforced 

concrete steel bars layouts, with relatively low computational cost. 

4.3.1 Finite element method 

Finite Element Method (FEM) is a numerical procedure widely used in engineering 

research and other study fields [33]. In the present study, FEM supplies the optimization model 

information regarding the stress and strain of continuous beams generated by the optimization 

model. The CALFEM program libraries, a software procedure library based on the FEM 

technique, was implemented inside the optimization process, allowing the optimization 

algorithm to request loads for different optimal candidates and calculate the stress and strain of 

reinforced concrete beams. FEM was carried out in a batch-oriented fashion. The sequence of 

functions is written in a separate file for the entire population of chromosomes of the GA. Four 

main functions were used to implement FEM within the optimization method developed, 

namely Material function, Element function, System function, and Matrix function. The 

Material function contains methods for constitutive models to treat linear elastic and isotropic 

hardening von Mises materials. The Element function contains methods to create an element 

and forces for a beam elements matrix. The System function comprises the systems of equations 

related to FEM, containing static functions (eigenvalue analysis, static condensation, element 

displacements, and coordinates) and dynamic functions (modal analysis and frequency domain 

analysis). The Matrix function comprises matrix operations methods and sparse matrix handling 

since sparse matrices are not created automatically, but once initiated, sparsity propagates. 
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Operation on sparse matrices usually produces other sparse matrices, and operations mixing 

sparse and full matrices also usually produce sparse matrices [6]. 

4.3.2 Genetic algorithm 

Metaheuristic methods emerged in the last quarter of the 20th century. They are 

stochastic optimization methods inspired by biological and natural observations . The number 

of metaheuristic algorithms is continuously increasing with new analogies imitating various 

phenomena. One of the first metaheuristic techniques used is GA. Using GA makes it possible 

to reach successful results in structural engineering problems without necessitating complex 

mathematical programming approaches. Constraints in GA can be handled easily if compared 

to classical optimization techniques [37]. 

The GA technique coded herein is based on improving a bunch of candidate solutions. 

This algorithm is easy to implement, does not depend on other heuristics, and may be used 

independently to solve parts of a problem using discrete and continuous variables with external 

algorithms (for the present work, the database generator algorithm is used as an external 

algorithm to GA). The Matlab Global Optimization Toolbox provides several algorithms to find 

optimal configurations in engineering problems, including the GA module used in the present 

study. 

GA begins with the input parameters, being an objective function (OF), constraints 

functions (CF), lower boundary (lb), upper boundary (ub), population size (n), maximum 

generations number (gmax), tolerance function (tf ), fitness value (χ), and mutation rate (μ). After 

the algorithm gathers the input parameters, it starts generating a random initial population, 

consisting of a set of elements denominated chromosomes, which are the solution candidates. 

Each chromosome of the population is evaluated iteratively through a measure of its suitability 

as a good solution candidate. The algorithm performs characteristic exchanges between two 

chromosomes to generate new populations, creating new individuals, following the recursive 

optimization operation, as shown in Fig. 4.9. 

For each iteration of the optimization process, the fitness function makes it possible to 

identify candidates with better characteristics. Thus, some of the best chromosomes are selected 

during the crossover steps. Several techniques can be used to choose the chromosomes that will 

undergo the crossover process, including roulette, Boltzmann, championship, classification, 

and steady-state selection, among others [34].  
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The stochastic uniform selection was used in the present study. 

Briefly, the algorithm begins generating an initial population, and on each GA iteration, 

the solution candidates are submitted to three evolution stages (selection, crossover, and 

mutation). Applying these operations makes it possible to define new populations, which are 

closer to the optimal result. The GA is recursively repeated for several generations until it 

reaches a predetermined tolerance, and the optimal solution for the proposed problem is given 

[28]. Table 4.2 presents the principal GA configurations used in the present study. 

Maximum stall generations and function tolerance are related since one of the 

algorithms stopping criteria happens if the average relative change in the best fitness function 

value in the range of the maximum stall generations is less than or equal to the function 

tolerance, and the constraint tolerance is used to determine if a linear or nonlinear constraint is 

feasible. 

4.3.3 Design variables 

In realistic design processes, reinforcement templates are defined by the commercial 

gauges and the number of bars used in each reinforcement layer. Thus, discrete variables better 

represent a realistic structural design process than continuous variables. This step is performed 

to decode discrete Design Variables step presented in Fig. 4.3, when the database and 

reinforcement detailing of beams are created. 

Using the concrete fck property as a design variable raises the possibility of finding 

better results even in more complex problems since defining smaller cross-sections and 

optimizing material costs usually makes the structure lighter, achieving lower bending moments 

and smaller cross-sections. Using high strength concrete increases the overall cost of the 

concrete, however. As such, it is important to ensure that fck is assigned as a design variable as 

this can greatly improve the optimization cost of structures. The use of fck as a design variable 

is one of the major highlights of the present study. Thus, all design variables (h, bw, As and 

fck) used in the proposed method are discrete design variables. 
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Figure 4.9 - Genetic Algorithm optimization pseudocode based on the presented methodology 
usage. 
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Table 4.2 – Fine tunning. 

 

 

4.3.4 Objective functions 

The convergence phenomenon present in evolutionary algorithms is treated in the 

present study by diversifying the initial population. The algorithm developed creates a regular 

average distance between individuals of the population by prior tuning the initial population 

range function. Two of the stopping criteria consider optimization convergence directly. The 

stopping criteria used are maximum stall generations (when the average relative change in 

fitness function is less the pre-set tolerance) and maximum stall time (when there is no 

improvement in the objective function during a pre-set interval of time).The Objective Function 

steps can be seen in Fig. 4.3. The objective function considers the costs associated with the 

construction of continuous beams, namely formwork, concrete (volume and changes for each 

fck available), and reinforcement costs (considering longitudinal primary and secondary, 

lateral, and transverse reinforcements). Material costs depend on each study and generally 

includes labor cost. The simplified cost expression is presented by Eq. (4.6). 

 

The volume of concrete is calculated as shown in Eq. (7), by finding the total beam 

volume. 

 

The formwork area, Af is calculated as shown in Eq. (8) by finding the perimeter areas 

without the beam’s top face. 
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The steel weight is calculated as shown in Eq. (9) by finding the total steel volume (Asi 

.Li plus stirrup volume) and multiplying by the steel specific weight (ρs). 

 

Fig. 4.10 presents some parameters adopted in the present RC beam model. The 

following parameters must be specified before the optimization process in order to determine 

the variables: loading conditions, support conditions, unit costs of different materials, and 

spacing/cover detailing requirements. 

Since the slab is not part of the optimization process, to obtain the beam’s concrete 

volume, the beam and slab are assumed not to be cast monolithically. As such, thickness (t) is 

considered a constant parameter and is disregarded in the total concrete volume by subtracting 

it from the beam height (h). 

4.3.5 Fitness function 

The GA function that is responsible for the whole computational GA optimization steps 

can handle linear and nonlinear constraints, with each handled differently. For the linear 

constraints, all the bounds are satisfied throughout the optimization process since the use of the 

crossover function only generates feasible points. But since the GA function is not able to meet 

all nonlinear constraints at every generation, the penalty algorithm is requested. The GA 

function used in this method attempts to minimize a penalty function, not the fitness function. 

In cases that the individual chromosome is feasible, the penalty function is the fitness function. 

Otherwise, in cases that the individual chromosome is infeasible, the penalty function is the 

maximum fitness function among feasible chromosomes from that population plus the 

constraint violations of the infeasible chromosome. This penalty function is combined with the 

binary tournament selection algorithm to apply values for selecting individuals for the next 

generations. 

In order to see the progress of the optimization process throughout the process, two plot 

functions can be used. For each generation, the best and mean population penalty value is 

plotted. As seen in Fig. 4.11, this resource is directly related to the fitness score of the 

population, and the closer these two values are, the closer the algorithm reaches a stopping 

criterion. A second progress verification may be used to plot the maximum constraint violation 

of a nonlinear constraint at every generation. 
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4.3.6 Model constraints 

The model constraints presented in this study form part of the Design Constraints steps 

presented in Fig. 4.3, and are summarised as follows. 

4.3.7 Design constraints 

The constraints are based on ULS and SLS conditions, according to NBR 6118 [1]. The 

constraints were normalized to reduce numerical errors that could occur during the iterative 

optimization process, since normalizing the constraints makes it easy for the user to compare 

constraints. Normalizing also avoids issues with the optimization algorithm in terms of 

executing the fitness function properly without size category influences. 

4.3.8 Flexural constraints 

As presented in Fig. 4.3, ULS is developed in the present study, and the most important 

constraint is Msd shall be less than or equal to Mu, considering the geometry, supports, and 

loads of continuous beams. Additionally, the following requirements were considered to 

calculate ductility and neutral axis (x) limits demonstrated in Eq. (10). 

 

A simplified diagram of strain domains is illustrated in Fig. 4.12. Given the strain 

domains for reinforced concrete sections, the neutral axis (x) must obey the limits of domains 

2 and 3, and domains 3 and 4 for ductility purposes as proposed by [1]. Thus, the reinforcement 

would result in the correct neutral axis position. 

In the present study, the neutral axis (x) position may vary as a unction of the effective 

beam height (d). The reinforcement used depends on the width of the beam (bw). For the cases 

of boundary limits 2, 3, or 4, Eqs. (4.10), (4.11), (4.12), and (4.13) below are applied. 
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Figure 4.10 - Beam parameters representations. 
 

 

 

Figure 4.11 - Output example of the developed methodology showing the optimization process 
fitness function comparing penalty values for the best candidate 

and mean population penalty (blue dots). 
 

 

Figure 4.12 - Strain domains for reinforced concrete sections. 
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4.3.9 Shear stress constraints 

Following the Ritter-Morch ̈  truss model, which is commonly adopted in standards, and 

in line with the [19], the truss model adopted was formulated as the ultimate bending moment. 

Eqs. (11)–(14) are coded. 

 

Eq. (12) require that the design stress (τwd) does not exceed the stress resistance (τwd2) 

and Eq. (13) defines the maximum spacing between stirrups (Smax). 

 

4.3.10 Deflection constraints 

In this section, the serviceability limit state (SLS) constraints of deflection considered 

in the proposed method are presented. The immediate deflection is calculated based on the 

equivalent stiffness, according to [11]. 

Eq. (14) presents the calculation process to estimate the deflection of 

continuous beams. 

 

The final deflection at an infinite time (ft=∞), obtained via Eq. (16), needs to be less 

than or equal to the maximum deflection allowed, which considers the effect type. For visual 

comfort, and to avoid a state of alert in users, the deflection limit is set as L/250. 
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4.3.11 Cracking constraints 

A constraint needs to be imposed to ensure that cracking be limited according to the 

code limits. As is known, shear stresses result in a cracks in RC structures. Most codes of 

practice set the crack opening limit considering an aggressive environment. Knowing the limit 

state of cracking, the crack opening limit is computed via Eq. (17). 

 

The limit state of cracking in structural concrete design codes usually considers 

environmental aggression. The limit used here (δcracking ) is 0.3 mm. 

4.3.12 Load combinations 

The standard codes used to verify the reinforcement concrete load combinations are 

shown in Eq. (18)[1] as load combination for ULS within the depletion of resistance capacity. 

 

Design constraints consider code limitations concerning the ULS and SLS, as well as 

several constructive constraints. In summary, all constraints used in the present study are shown 

below, and parameter gi represents each design constraint, as can be seen in Fig. 4.3, Design 

Constraints steps. 

The compressed steel area (Asc) must be less than or equal to half the tractive steel area 

(Ast), as demonstrated in Eq. (19). 

 

The steel area must be less than 4% of the concrete cross-section area, as illustrated in 

Eq. (20). 

 

Deflection at an infinite time (Def∞) must be less than the maximum permissible 

(Deflimit), as shown in Eq. (21). 
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Crack opening (wkexis) must be less than the limit allowed by the code (wkallow), as 

per Eq. (22). 

 

The α factor must be limited by beam height (h), according to Eq. (23). 

 

Neutral axis depth (x) must be between domains 2 (lower limit x23) and 4 (upper limit 

x34), as per Eq. (24).  

 

 

Flange height (t) must be lower than the effective height of the beam (d) and less than 

80% of the neutral axis (x) (and vice-versa in this case), as demonstrated in Eqs. (25). 

 

The clear spacing between stirrups (Sstir) must be between the maximum (Sstirmax) 

and minimum (Sstirmin) allowed by the code, as per Eqs. (26). 

 

Clear spacing restrictions for longitudinal reinforcements must be within the pre-

established limits, according to the following equation. 

 

The ultimate bending moment (Mu) must be less than or equal to the design bending 

moment (Msd), as per Eq. (28). 

 

Concerning the side constraints, since the optimization model uses discrete design 

variables, the upper and lower boundaries are vector positions instead of geometries or material 

limits. The lower boundaries always has a value of one, the first position on the possibilities 

vector. 
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 NUMERICAL APPLICATION AND RESULTS  

Two case studies are presented and compared with the results available in the literature. 

Since the present study considers the characteristic strength of concrete (fck) as a design 

variable, fck values were adapted in all study cases, considering the average percentage 

increase/decrease for each fck cost studied, based on average market variations at the time of 

the research. These comparisons were made to verify if when discrete variables instead of 

continuous ones (number of bars instead of area of steel) are used, the optimization process 

would still reach equivalent results. 

4.4.1 Applications considering simply supported beams 

A simply supported beam was analyzed. For the sake of simplicity of this first analysis, 

the study by [16] was used for result comparison to check if, even with a realistic approach, the 

proposed methodology 

would provide competitive solutions. As previously mentioned, these researchers also 

used a genetic algorithm (GA) to study reinforced concrete beam optimization. Additionally, a 

second comparison was made with the results presented by [13], who used another optimization 

method for the same case study. The simplified scheme for the proposed problem is illustrated 

in Fig. 4.13. 

The costs of the materials and the applied loads used in this first case study are presented 

in Table 4.3. 

The results obtained in the present study (PS), [16] and [13] are depicted in Table 4.4. 

Table 4.4 shows that the optimal configuration obtained here is less costly than the references. 

An optimal result cost 13.5% less than [13], and 17.07% less than [16] was obtained, even 

representing a more realistic reinforcement layout solution. 

4.4.2 Second study case considering simply supported beams 

For the second comparison of simply supported beams case, the study by [22] was used. 

The authors had also used GA for reinforced concrete beam optimization. A second comparison 

was made with the results presented by [23] since they used another optimization method 
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Table 4.3 - Material costs and applied load for the simply supported case study. 
 

 

Table 4.4 - Comparison between the results of the present study (PS), [16], and [13]. The column 
of values referenced was proposed by [13] in February 1992. 

 

 

 

 

 

Figure 4.13 - Strain domains for reinforced concrete sections. 
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Table 4.5 - Material costs and applied load for the simply supported case study, proposed by [22] 
and adapted by the present study. 

 

 

for the same case study. Another computational experiment was conducted, considering 

the fck as a parameter rather than a variable, using the same concrete strength and cost used in 

[23] and [22] (fck equals to 25 MPa), but keeping the discrete reinforced bars in order to verify 

the impact of the having fck as a variable. The fck found by the present study here was 30 MPa. 

For the case studies from the literature, the simplified structural disposal and loads can be seen 

in Fig. 4.14. 

The costs of the materials and applied loads used in the second case study are presented 

in Table 4.5. 

The results obtained in the present study (PS), [22] and [13] are illustrated in Table 4.6. 

Table 4.6 shows that the optimal configuration obtained in the present study was less 

costly than the references. The optimal result cost obtained by [23] was 14.98% higher than the 

present work, and results obtained by [22] was 8.14% higher than the present work, even the 

proposed method achieving a more realistic reinforcement layout solution. 

The present study without fck as a design variable achieved results 8.89% more 

expensive then [22]. This may be due to the adoption of the steel bars as a discrete variable, and 

this tends to obtain worst results if compared with solutions that use continuous variables. 

The adoption of a discrete variable tends to obtain worst results in relation to the use of 

continuous variable and the use of fck as design variable tends to enhance the optimization 

results pattern. 

4.4.3 Applications considering continuous beams 

For continuous beam applications, the studies from the literature were also used for 

comparison with the present investigation. The case study considered a continuous beam with 
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three spans (7 m, 5 m, and 4 m) and 28, 56, 28, and 28 cm supports, respectively. The loads 

considered were rectangular uniformly distributed loads of 18 kN/m as dead load and 20 kN/m 

as live load, as shown in Fig. 4.15. [22] also used discrete design variables and fck equal to 25 

MPa. The fck found by this methodology were 30 MPa for this study case and doubly 

reinforcement for some critical sections, as presented in Fig. 4.16. 

The materials costs were the same as shown in Table 4.5. A flange height of 12 cm was 

considered, and labor is included in the material costs. 

The references stated that beam width (bw) was fixed at 24 cm and, as such, was not 

deemed a design variable. This geometrical condition was not inputted in the present study. 

The height (h) was considered constant in all spans. Table 4.7 presents the results 

obtained by the three optimization models. 

Table 4.7 shows that the optimal total cost configuration obtained here is lower than the 

references. The optimal result obtained by [23] costs 12.09% more than the present study, and 

[22] costs 3.63% more than the present study. Same as for the second study case, the 

optimization without using fck as a design variable was performed, reaching results 10.03% 

more expensive than the present study proposed method considering fck as a design variable. 

The present study considers beams and their reinforcements as a complete model, which 

includes longitudinal reinforcement along with the design variables previously mentioned, 

thereby achieving similar or better results than those of less encompassing methodologies. 

The design constraint values obtained by the optimal configuration of the present study, 

compared with [22], are shown in Fig. 4.16. The values presented in Fig. 4.16 are organized by 

critical section constraints, span constraints, and those of the entire beam model. 

The design constraint values of the optimal configuration for both [16] and [22] are 

shown in Fig. 4.16. Values lower than 0 mean that the constraint is feasible and meets the 

standard code requirements. Values near 0 indicate that the constraints limit the cost reduction 

and are considered active. 

Table 4.6 - Comparison between the results of the present study, [22] and [13]. 
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Figure 4.14 - Case study proposed by [23] and compared with that of [22]. 
 

 

Figure 4.15 - Design constraints obtained by comparing the present study with that of [22]. 
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Figure 4.16 - Optimal design detailing obtained by the present methodology for the continuous 
beam case study. 

 

Table 4.7 - Comparison of results obtained in the present study (PS), present study without 
using fck as a design variable, [22] and [23]. 

 

 

For both comparisons, the neutral axis (x) limits the region and the ultimate bending 

moment, design constraints being g7, and g16, respectively, both being active constraints. For 

the comparison with [16], flange height (t) was less than 80% of the neutral axis, considered 

constraint g9, also active. 

It can be observed that g1 in critical section 5, g10 in span 1 and 2, g11 in span 3, g12 

in span 2 and 3, g13 in span 2 and g16 in critical section 1 are cost reduction limits, and, as 

such, considered active design constraints. 

Thus, although the present study used discrete variables and gave a more realistic output, 

it obtained significantly lower values than the results presented by [16] and [13]. It also showed 

better results when compared with [22] and [13]. Thus, these results demonstrate that the use 

of different characteristic strength of concrete as a design variable (considering the respective 

cost for each fck) had a significant impact on the final results. 

In the present study, the bending moment diagrams obtained by FEM show the regions 

that need longitudinal reinforcement. Sequentially, the possible reinforcement layouts are 

considered in the optimization process. Thus, the algorithm has the freedom to select different 

reinforcement layouts for each critical section of the beam. 

The advantage of considering the fck, top and bottom reinforcements as discrete design 

variables is that, depending on the material costs, there may be cases where doubly 

reinforcements and smaller cross-sections achieve better results. The use of the database 

generator presented in Fig. 4.3 allows the proposed method to achieve code verified and more 

realistic solutions and doubly reinforcements. 

The optimal design detailing obtained by the present methodology is shown in Fig. 4.16. 
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 CONCLUSIONS 

A computational method was presented for the optimal design of reinforced concrete 

continuous beams using a new database system to define steel reinforcement and solved using 

genetic algorithms. 

The developed computational tool provides rational and realistic optimization solutions 

for any reinforced concrete continuous beam problem. The optimization model exhibits low 

mathematical, numerical, and computational complexity, allowing future upgrade. It can also 

be included in commercial structural design software because of its low computational cost. 

Besides, optimal design results can be controlled in a user-friendly manner by specifying 

the design variable boundaries, modifying material characteristics, changing material costs to 

suit the time and geographic region, and updating business sales patterns, among others. 

The results obtained in comparison with those generated in [16] and [13] for simply 

supported beams were 17.07% and 13.50% cheaper, respectively. The findings of the 

comparison between [22] and [23] with this study on simply supported beams were 8.14% and 

14.98% cheaper, respectively. Results obtained when contrasting [22] and [23] with the present 

study for continuous beams were 3.63% and 12.09% cheaper, respectively. As the optimization 

method optimizes chromosomes by each reinforcement bar, and each bar may have different 

costs due to the reinforcement database used to aid the database generator, the reflected prices 

may include labour for better precision and accuracy, representing real structural projects. 

The comparison with other studies was made in order to verify if the proposed method 

granted near of even better results, when discrete variables were utilised in the optimization. 

Better results were obtained, indicating that fck usage as a design variable may be an important 

improvement for optimizing reinforced concrete beams. Using the reinforcement database 

generator proposed, considering top and bottom reinforcements as design variables, allows the 

optimization algorithm to test doubly reinforcement solutions in the optimal search that was not 

used in previews case studies. Another degree of freedom added to the method proposed is the 

use of fck as a design variable, allowing the optimization algorithm the freedom to try several 

cross-section solutions that would otherwise not be tested. As such, the method was able to find 

better solutions for the case studies presented and would be a better fit for industry software 

adaptation. 

One limitation of the methodology is the lack of consideration of slab design as part of 

the optimization process. Future studies suggest a broader optimization method, including slabs 

and columns, encompassing an entire building. 
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 DISCUSSION OF CHAPTER 4 

4.6.1 Key Findings 

The discrete optimization model introduced in this chapter represents a significant 

advancement over previous continuous optimization methods. By working with a finite set of 

data, the model successfully optimizes reinforcement layouts in reinforced concrete structures, 

offering both material efficiency and structural integrity. This approach was groundbreaking at 

the time of its publication, as it allowed for the practical application of optimization techniques 

to real-world structures for the first time. The shift from continuous to discrete optimization 

was not only more aligned with the realities of engineering practice but also set the stage for 

the integration of machine learning techniques in later stages of this research. 

4.6.2 Implications 

The implications of this work are profound. The discrete optimization model has the 

potential to transform standard practices in the design and detailing of reinforced concrete 

structures. By enabling more accurate and efficient material usage, this approach supports both 

economic and environmental goals. Additionally, the success of this model demonstrates the 

viability of using finite datasets in engineering optimization, which directly contributes to the 

broader field of machine learning in structural engineering. This chapter’s findings have 

influenced subsequent research, leading to the development of new predictive models and 

optimization techniques that are more practical and applicable to real-world scenarios. 

4.6.3 Limitations 

While the discrete optimization model offers significant advantages, its effectiveness is 

still contingent on the quality and accuracy of the input data. Inaccurate material properties or 

loading conditions could result in suboptimal design outcomes. Additionally, the computational 

demands of the optimization process, while reduced compared to continuous models, may still 

pose challenges in very large or complex structures, particularly when computational resources 

are limited. 
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4.6.4 Future Work 

Building on this foundational work, future research could explore the integration of 

machine learning techniques to further enhance the optimization process. By training models 

on the finite dataset used in this chapter, it may be possible to develop even more efficient and 

accurate predictive tools. Additionally, applying this discrete optimization model to a wider 

range of structural types and conditions, including dynamic loading scenarios, could expand its 

applicability. Real-world testing and validation of the model’s outcomes would also be valuable 

in solidifying its role in structural design practice. 

 CONCLUSION FOR CHAPTER 4 

This chapter laid the foundation for the entire research presented in this thesis. The 

development of a mathematical optimization model using discrete optimization techniques 

marked a significant breakthrough in the field of reinforced concrete design. Prior to this work, 

continuous optimization models were the norm, but they often fell short in addressing the 

practical challenges of optimizing real-world reinforced concrete structures. By introducing a 

discrete optimization model, this research made it possible to accurately and efficiently 

optimize reinforcement layouts for actual structures for the first time. 

The use of a finite set of data, rather than relying on continuous models, opened up new 

possibilities for further research and application. This approach not only improved the 

optimization process itself but also paved the way for integrating machine learning techniques, 

which could leverage this finite dataset to train predictive models. This chapter is therefore 

crucial, as it represents the starting point from which the broader thesis developed, leading to 

innovative methodologies that build upon this foundational work. 

This model not only optimizes material usage but also lays the groundwork for 

integrating more advanced techniques in structural analysis. With the establishment of this 

optimization model, the focus now shifts to addressing specific challenges in concrete 

structures, such as durability under environmental stressors. 
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5 STRESS CORROSION CRACKING IN PRESTRESSED CONCRETE: A STUDY 

OF SCC IN PRESTRESSED CONCRETE APPLICATIONS 

This chapter is being published as an original research article in International 

Conference on Construction Project Management 2024. 

 

PIEROTT, Rodrigo et al. Stress corrosion cracking in prestressed concrete: a 

study of SCC in prestressed concrete applications. In: International Conference 

on Construction Project Management 2024. 

 

Chapter 5 builds on the optimization framework by examining one of the critical durability 

challenges in prestressed concrete: stress corrosion cracking (SCC). This chapter investigates 

the conditions under which SCC occurs and its impact on structural integrity, providing 

essential insights that complement the optimization strategies introduced earlier. 

 

 

ABSTRACT 

This paper delves into the prevalent issue of pathological problems in concrete structures, with 

a specific focus on corrosion in steel reinforcement. It details an experimental investigation into 

the effects of chloride environments on prestressed concrete structures. Central to this study is 

the analysis of stress corrosion cracking (SCC) in 5 mm prestressing strands. The findings 

reveal that SCC predominantly manifests as pitting corrosion, which in turn initiates micro 

cracking on the wire surface. Intriguingly, the stress applied to the wires appears not to alter the 

composition of the corrosion products. This research offers comprehensive insights into the 

behavior of high-carbon steel wires under SCC conditions. A critical discovery is the significant 

influence of stress level on SCC progression, which markedly diminishes the ultimate strength 

of the corroded wires. This is particularly evident in the 48% reduction in ductility of wires at 

95% of the tensile strength (fptk), a consequence of the formation of localized microcracks. 

These findings underscore the need for a deeper understanding of SCC in prestressed concrete 

structures, which is vital for enhancing their durability and longevity.. 

 

Keywords: 

Chloride Attacks, Stress Corrosion Cracking, Steel Wire Degradation, Civil Infrastructure 

Durability, Prestressed Concrete. 
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 INTRODUCTION 

Prestressed concrete, a cornerstone in modern construction, benefits from the pre-

application of stress to enhance its strength and durability under service loads. This engineering 

marvel utilizes high-performance concrete coupled with high-strength steel, enabling structures 

to withstand significant stress levels before external loads are applied [1]. Despite its 

widespread adoption for its superior performance, prestressed concrete is not immune to the 

insidious threat of stress corrosion cracking (SCC). SCC represents a critical failure mode, 

where the synergistic effects of mechanical stress and corrosive environments precipitate the 

formation of microcracks on steel surfaces [2,3,4]. These microcracks can expand rapidly under 

continued stress, leading to sudden and often unpredictable failures in structural elements, 

significantly reducing their yield strength and, ultimately, their service life. 

The phenomenon of SCC is particularly alarming due to its ability to compromise the 

integrity of structures without prior deformation or visible signs of distress, making early 

detection and intervention challenging [5]. SCC is influenced by a trinity of factors: the 

material's inherent susceptibility, the level of applied stress, and the presence of a corrosive 

environment [6,7,8]. This complexity is further compounded by the diverse nature of these 

elements, including variations in stress types (residual or externally applied) [9], material 

properties, and environmental conditions such as temperature, aeration, and the presence of 

specific corrosive agents. For instance, the susceptibility of different alloys to SCC can vary 
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dramatically in the presence of certain chemicals, highlighting the intricate interplay between 

material science and environmental chemistry in the context of SCC [5]. 

The pressing need to understand and mitigate SCC in prestressed concrete is 

underscored by its prevalence in critical infrastructure, including nuclear power plants, where 

the long-term performance and safety of such structures are of paramount importance [10]. 

Despite the durability of prestressed concrete, the advent of chloride-induced steel corrosion 

emerges as a dominant factor undermining the structural integrity of these constructions [11]. 

Recent studies have illuminated the detrimental impact of corrosion on the residual strength of 

prestressed tendons, indicating significant reductions in ultimate strength and ductility, which 

in turn affect the failure modes of the structures [12-27]. 

Amidst this backdrop, our study endeavors to bridge a crucial knowledge gap by 

examining the behavior of prestressing strands, particularly those with diameters less than 8 

mm, a domain less explored in contemporary research. Given the heightened risk of cross-

sectional loss and subsequent deterioration in smaller diameter strands, our investigation seeks 

to shed light on the nuanced impacts of different prestressing levels on SCC, employing an 

experimental approach that encompasses a comprehensive analysis of material behavior under 

simulated environmental conditions [28]. Through this research, we aim to contribute to the 

broader understanding of SCC mechanisms, offering insights that could inform more resilient 

design and maintenance strategies for prestressed concrete structures. 

 BACKGROUND 

The phenomenon of stress corrosion cracking (SCC) has emerged as a significant 

concern for the longevity and reliability of prestressed concrete structures. SCC involves the 

initiation and propagation of cracks in a material subjected to tensile stress in a corrosive 

environment, leading to premature failure of structural components. In prestressed concrete, 

this manifests as a critical threat, particularly due to the high levels of stress applied to the steel 

reinforcement to achieve desired prestress levels. 

Recent advancements in monitoring technologies have allowed for a more nuanced 

understanding of corrosion-induced degradation within these structures. (Jiang et al., 2017) 

developed a piezoceramic-based sensing approach to monitor the progression of corrosion 

within prestressed concrete beams, highlighting the potential for early detection of corrosion-

induced damage before visual signs become apparent. 
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The susceptibility of prestressed steel to SCC is further complicated by the presence of 

local concrete cracks. (Sun et al., 2014) investigated the impact of such cracks on the stress 

corrosion sensitivity of prestressed steel, uncovering that local concrete defects significantly 

increase the material's vulnerability to SCC. 

Despite the recognition of these risks, the behavior of corrosion cracks in pretensioned 

prestressed concrete members remains less explored. (Agus et al., 2013) provided insights into 

the mechanisms of corrosion crack in such members, emphasizing the need for further research 

in this area. 

Understanding the bond loss between the prestressed steel and concrete due to corrosion 

is crucial for assessing structural integrity. (Ortega et al., 2018) reviewed the mechanical effects 

of reinforcement corrosion on the bond strength in prestressed concrete beams, shedding light 

on the factors that reduce service life and load-bearing capacity. 

Furthermore, the propagation of corrosion in prestressing steel strands embedded in 

concrete exposed to chlorides has been identified as a significant risk factor for structural 

failure. (Li et al., 2011) conducted a long-term experimental program to examine this 

phenomenon, finding that stress levels and the type of steel significantly affect corrosion rates, 

with pitting corrosion being the predominant form of damage in such environments. 

Understanding the impact of corrosion on the structural performance of prestressed 

concrete beams, especially under transverse loads, is crucial for assessing their long-term 

reliability. (Recupero & Spinella, 2019) undertook experimental tests on corroded prestressed 

concrete beams to evaluate how tendon corrosion influences their response behavior. Their 

work highlights the detrimental effects of corrosion on the load-bearing capacity of beams, thus 

emphasizing the importance of timely corrosion detection and intervention strategies. 

Moreover, the initiation of SCC in prestressing steel within hardened cement mortar, 

particularly under chloride exposure, remains a complex issue warranting further investigation. 

(Joseline et al., 2021) shed light on this matter by exploring the passive to active transition 

indicative of SCC onset. Their study underscores the critical role of environmental conditions, 

such as chloride concentration, in facilitating this transition, thereby contributing to our 

understanding of SCC initiation mechanisms and the pivotal factors that influence them. 

By situating our study within this context, we aim to address the gaps identified in the 

current understanding of SCC in prestressed concrete, particularly focusing on the behavior of 

smaller diameter prestressing strands under various corrosive conditions. Our research seeks to 

contribute to the development of more durable and resilient prestressed concrete structures 

capable of withstanding the challenges posed by corrosive environments. 
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 EXPERIMENTAL RESEARCH 

5.3.1 Selection and Characterization of Materials 

This study focuses on cold-drawn carbon steel wire, a material extensively used in 

prestressed concrete applications. Its selection was guided by its compliance with NBR 

7482:2008 standards, ensuring that our findings are directly applicable to the construction 

industry. The chemical and mechanical properties of the specimen were meticulously analyzed 

to understand their influence on the steel's performance, especially its susceptibility to stress 

corrosion cracking (SCC). 

 

Table 5.1 - Chemical composition of the specimen (Weight Percent, wt.%). 

 

 

The chemical composition, as detailed in Table 5.1, highlights a high carbon content 

which is known to significantly affect the steel's mechanical properties, including its strength 

and ductility. The controlled amounts of manganese, silicon, phosphorus, and sulfur contribute 

to the wire's overall performance in harsh environments. 

 

Table 5.2 - Mechanical Properties of the Specimen. 

 

 

Table 5.2 presents the mechanical properties of the steel wire, including its ultimate 

tensile strength and modulus of elasticity, which are critical in determining its behavior under 

stress. The wire's high hardness level further underscores its potential for high performance in 

prestressed concrete applications, albeit with considerations for its brittleness. 
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5.3.2 Microstructural Analysis 

The wire's microstructure was extensively examined to provide deeper insights into its 

characteristics that might influence its susceptibility to SCC. The analysis revealed a 

predominantly pearlitic structure with fine lamellar spacing, indicative of the wire's high 

strength and hardness. The presence of pearlite, along with trace amounts of cementite, suggests 

that the wire, while high in strength, may also exhibit a level of brittleness — a factor that could 

influence its behavior in corrosive environments typically encountered in prestressed concrete 

applications. 

The detailed examination of the wire’s microstructure is crucial for understanding how 

its inherent properties affect its durability and performance, particularly its resistance to stress 

corrosion cracking. The high carbon content, responsible for the wire's strength, also 

necessitates careful consideration of its application in environments where corrosion could 

precipitate brittle failure. 

 

Figure 5.1 - Microstructure of the wire, a: Transverse view, and b: Longitudinal view. 
 

The microstructure of the cold-drawn carbon steel wire was meticulously analyzed to 

uncover characteristics that potentially influence its susceptibility to stress corrosion cracking 

(SCC). Understanding the microstructural features is paramount, as they directly impact the 

mechanical behavior and corrosion resistance of the material. 

2.1b (Longitudinal View): The longitudinal view further elucidates the wire’s 

microstructure, emphasizing the orientation of pearlite and the presence of cementite lines. This 

arrangement not only contributes to the wire’s notable strength and hardness but also to its 

brittleness, a factor that could enhance its vulnerability to SCC in corrosive environments. 
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The analysis of the wire's microstructure reveals a dual nature: while its strength and 

hardness are desirable for prestressed concrete applications, the brittleness—stemming from its 

high carbon content and microstructural features—necessitates a cautious approach to its use in 

environments prone to corrosion. 

 

  

Figure 5.2 - Microscopy details of the 95%fptk wire: (a) microcracking on the wire surface 
(2000x magnification); (b) presence of microvoids (3000x magnification). 

 

Figure 5.2 presents microscopy evidence of the microstructural degradation in 95% fptk 

prestressed steel wires under corrosive stress. Part (a) of the figure, captured at 2000x 

magnification, reveals the presence of microcracks on the wire surface. These microcracks are 

critical indicators of the onset of stress corrosion cracking (SCC), a significant concern for the 

longevity and safety of prestressed concrete structures. The high magnification allows for a 

clear visualization of the damage, emphasizing the severity of the microcracking phenomenon. 

This figure provides visual confirmation of the microcracking and underscores the 

intricate details of the corrosion process that can lead to structural failure. The presence of 

microcracks is a testament to the vulnerability of the material when exposed to simultaneous 

mechanical stress and corrosive environments. The detailed visualization offered by this figure 

is essential for understanding the micro-mechanisms contributing to SCC and serves as a 

powerful tool for elucidating the material's behavior under conditions that mimic real-world 

applications. 

The analysis of such microstructural damage is vital for advancing the field's 

understanding of SCC and for developing more effective corrosion-resistant materials and 

protective measures. It is through such detailed studies that engineers and researchers can 
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improve the design and durability of prestressed concrete structures, ensuring their performance 

and reliability over time. 

The anchoring system plays an important role in the application of pre-tension to the 

steel wires, simulating the operational stresses encountered in real-world prestressed concrete 

scenarios. This system ensures that the wires are subjected to a uniform pre-tension, crucial for 

the study of stress corrosion cracking under controlled conditions. 

 

 
Figure 5.3 - Schematic of the anchoring system showing the devices used to fix the profile to the 

reaction slab. 
 

Figure 5.3 provides a detailed schematic view of the anchoring system, illustrating the 

components and their arrangement for securing the wire to the reaction slab. The design of this 

system is instrumental in applying a precise and consistent pre-tension to the steel wire, 

mimicking the conditions under which prestressed concrete is utilized in construction projects. 

Layout of the Prestressing System. Succeeding Figure 5.4, this layout offers an 

overview, to understanding of the experimental setup for prestress application. 
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Figure 5.4 - Layout of the prestressing system. 
 

The development and implementation of a robust anchoring system are essential for 

accurately replicating the stress conditions that prestressed steel wires undergo in service. By 

ensuring the uniform application of pre-tension, the anchoring system facilitates a controlled 

investigation into the effects of mechanical stress on the corrosion behavior of the steel wire. 

Following the schematic, this layout offers an expansive view of the entire prestressing 

setup, including the anchoring system and the mechanism for applying pre-tension. This 

overview is crucial for understanding the experimental framework within which the SCC 

analysis is conducted. 

The prestressing process is a crucial aspect of our study, designed to closely replicate 

the stress conditions that are inherent to prestressed concrete structures in real-world scenarios. 

A sophisticated hydraulic system was employed to apply and precisely control the tension 

across the steel wires. This methodology ensures that the applied pre-tension closely mimics 

the operational stresses experienced by prestressed concrete components, thereby enhancing 

the relevance of our findings to practical applications. 
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Figure 5.5 - Anchoring system of the prestressed strands. 
 

Figure 5.5 illustrate the sophisticated arrangement designed to maintain consistent wire 

tension throughout the experiment. The visual provided in Figure 5.5 is essential for 

understanding the mechanical setup that enables the precise application of pre-tension, a critical 

factor in exploring the relationship between stress levels and their influence on corrosion 

behavior. The figure showcases the hydraulic system and its components, highlighting the 

meticulous design that underpins the replication of prestress conditions. 

To investigate the synergistic effects of mechanical stress and corrosive environments 

on SCC, we established a controlled experimental setup. This setup was meticulously designed 

to simulate the environmental conditions known to precipitate SCC, thereby allowing for a 

comprehensive analysis of how such conditions affect the susceptibility of steel wires to 

corrosion when under stress. 

 

 

Figure 5.6 - Experimental setup. 
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Figure 5.6 provides a vivid illustration of the laboratory setup tailored for this purpose. 

This figure serves as a visual guide to the experimental arrangement, elucidating the methods 

employed to create a corrosive environment that simulates real-world conditions. The setup 

depicted in Figure 5.6 includes the corrosion-inducing elements and the system for applying 

tension, facilitating a controlled study of SCC under conditions that reflect the challenges faced 

in the field. 

To accurately simulate the aggressive conditions that lead to stress corrosion cracking 

(SCC), a meticulous corrosion acceleration test was conducted. This involved the application 

of a direct current to the steel wire samples, a method proven to expedite the corrosion process 

and thereby mimic the accelerated deterioration observed in real-world scenarios. 

 

 

Figure 5.7 - Corrosion Acceleration Test. 
 

Figure 5.7 captures the setup used to apply electrical current to the steel wires. The 

image demonstrates how multimeters are employed to monitor the current flow, ensuring that 

the desired conditions for accelerated corrosion are achieved. This visual aid is pivotal in 

conveying the practical steps taken to induce corrosion, offering readers a clear window into 

the experimental procedures that underpin our findings. 

Understanding the impact of varying stress levels and environmental exposures on 

corrosion behavior necessitated a systematic classification of steel wire samples. This 

organization allows for a nuanced analysis of how different pre-tension levels and exposure 

durations influence the development of corrosion patterns, providing insights into the complex 

interplay between mechanical stress and corrosive environments. 

 



96 
 

Table 5.3 - Stress levels. 

 

 

In Table 5.3, samples are grouped according to their pre-tension levels and assigned 

exposure times. This classification forms the basis of our experimental design, facilitating a 

targeted investigation into the specific effects of prestress conditions on corrosion 

susceptibility. The table serves as an essential reference for interpreting the experimental setup 

and understanding the rationale behind the grouping strategy. 

A comprehensive assessment of corrosion rates was carried out, leveraging both 

quantitative weight measurements and qualitative microstructural analyses. This dual approach 

enables a thorough understanding of SCC effects, merging numerical data with microscopic 

observations to paint a complete picture of the corrosion process. 

The evaluation of corrosion rates involved precise measurements of weight loss before 

and after exposure to corrosive conditions, adhering to established standards for accuracy. 

Concurrently, advanced microscopy techniques were employed to examine the microstructural 

changes in the wires, identifying the presence of corrosion products, pit formation, and any 

indications of crack initiation and propagation. This meticulous analysis sheds light on the 

material's degradation mechanisms, offering valuable insights into the factors that contribute to 

the susceptibility of prestressed steel wires to stress corrosion cracking. 
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Table 5..4 - Analysis of variance of the weight loss results obtained 

 

 

Table 5.4 presents a comprehensive analysis of variance (ANOVA) for the weight loss 

results, a critical metric in evaluating the severity of corrosion in steel wires subjected to 

different conditions. This statistical examination meticulously quantifies the impact of two 

major experimental variables: the attack period and the pre-applied tension on the corrosion 

process. By delineating the sum of squares (QS), which aggregates both between-sample and 

within-sample variations, and the degrees of freedom (DOF) associated with each factor, the 

table offers a nuanced insight into the experimental data's variability. The mean square (RMS), 

calculated as QS divided by DOF, alongside the F-ratio, which contrasts between-sample 

variation to within-sample variation, highlights the statistical significance of each variable in 

influencing corrosion rates. The remarkably low P-values associated with both the attack period 

and pre-applied tension underscore their substantial impact on corrosion, further validated by 

F-values surpassing the critical F-value thresholds. This analysis not only reinforces the 

precision of the experimental setup but also elucidates the complex dynamics governing 

corrosion in prestressed steel wires, providing a solid foundation for the subsequent discussion 

on material behavior and corrosion mitigation strategies. 

The integration of detailed visual aids, such as Figure 5.7, with methodical classification 

strategies and rigorous analytical techniques enriches the manuscript significantly. By 

providing a comprehensive overview of the experimental framework and analytical 

methodologies, this enhanced content ensures a deep and well-rounded understanding of the 

study's foundations. Such a detailed exposition supports the subsequent discussion of findings, 

laying a solid groundwork for addressing the challenges of stress corrosion cracking in 

prestressed concrete applications and contributing to the development of more durable 

infrastructure solutions. 
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 EXPERIMENTAL RESULTS AND DISCUSSION 

The initial stages of corrosion were observed just one hour after exposure, with the 

formation of black and red rust at the solution-air interface of the wire, indicating the onset of 

corrosion. As the exposure continued, corrosion products progressively covered the portions of 

the wire submerged in the corrosive solution. This phenomenon highlights the rapid 

development of corrosion under experimental conditions designed to simulate stress corrosion 

cracking (SCC) environments. 

Figure 5.8 presents the findings from the energy dispersive spectroscopy (EDS) analysis 

conducted using a scanning electron microscope (SEM). Figure 5.8 captures the elemental 

composition of both the reference (unexposed) and corroded (exposed for 3 hours) samples, 

providing a visual representation of the corrosion products that formed on the wire's surface. 

The EDS analysis offers insights into the nature and composition of the corrosion products, 

revealing that the development of these compounds is largely independent of the mechanical 

stress levels applied to the steel, as indicated by the absence of significant variation in chemical 

composition across different stress levels [6][8]. 
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Figure 5.8 - Testing the 0% fptk wire: SEM of the wire as received (300x magnification). 
 

The electron and optical microscopy analyses shed light on the microstructural changes 

occurring at the onset of corrosion, offering a detailed look at the corrosion process's dynamics. 

The emergence of rust and subsequent coverage by corrosion products underscore the 

aggressive nature of the simulated SCC environment. Notably, the radiographic corrosion 

analysis performed alongside EDS revealed that the chemical makeup of the corrosion products 

remains consistent, regardless of the stress conditions applied to the steel. This observation 

suggests that the susceptibility of the steel to corrosion in the given environment is not directly 

influenced by the applied stress, at least in the context of the chemical composition of the 

resulting corrosion products. 

The utilization of advanced microscopy techniques, such as SEM and EDS, in this study 

provides a comprehensive understanding of the corrosion mechanisms at play. By analyzing 

the corrosion products at a microscopic level, we gain invaluable insights into the early stages 

of corrosion development and its progression over time. These findings are crucial for 

developing strategies to mitigate SCC in steel wires used in prestressed concrete applications, 

emphasizing the importance of material composition and environmental factors in influencing 

corrosion behavior. 

5.4.1 Microscopic Analysis of Corrosion Products 

The microscopic examination of the steel wire samples post-exposure revealed the 

formation of corrosion products characterized by continuous, irregular, and porous layers, 

indicative of iron oxide and its derivatives. This signals the onset of corrosion on the steel's 

surface. Utilizing Energy Dispersive Spectroscopy (EDS) analysis, we identified the primary 

chemical constituents of these corrosion products as Iron (Fe), Carbon (C), and Oxygen 

(O)[citation needed]. It's crucial to note that EDS provides insight into the elemental 

composition on a microscopically small area, highlighting the presence or absence of elements 

within the corrosion products. 
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5.4.2 Corrosion Rate Analysis 

The assessment of corrosion rate, particularly in relation to tensile strength under stress 

corrosion conditions, involved measuring weight loss due to corrosion[citation needed]. 

Adhering to standards set by ASTM G1-72 and NACE RP 0775[citation needed], we calculated 

the corrosion rates (T) for our samples. The findings reveal minimal discrepancies between the 

average corrosion rates determined by the two methodologies, underscoring the comparability 

of these techniques. Notably, the uniform corrosion rate for wires with no applied pre-tension 

(0% fptk) was classified as strong, ranging from 0.13 to 0.25 mm/year. In contrast, wires under 

different pre-tension conditions exhibited more severe corrosion rates, suggesting that 

mechanical stress plays a significant role in accelerating corrosion. 

An Analysis of Variance (ANOVA) was conducted to evaluate the impact of varying 

pre-tension levels and exposure durations on weight loss due to corrosion. The ANOVA results 

highlight significant differences across conditions, suggesting that both the duration of 

exposure to corrosive environments and the level of applied pre-tension are critical factors 

influencing corrosion susceptibility. 

5.4.3 Mechanical Strength Assessment 

The decline in mechanical strength due to corrosion was assessed through direct tensile 

tests on samples exposed to the aggressive solution for three hours. The resulting stress-strain 

curves show a substantial reduction in the ultimate capacity of the wires, with decreases in both 

the elastic limit and ultimate strain observed in the prestressed, corroded wires. This reduction 

not only demonstrates the negative effects of corrosion on material integrity but also 

underscores the necessity for protective measures in prestressed concrete applications to 

mitigate corrosion over time. 

The assessment of ductility, which represents the wire's capacity to undergo significant 

deformation before rupture, reveals critical insights into the effects of corrosion on mechanical 

properties. For the unstressed corroded wire (0% fptk), a notable reduction in ductility was 

observed, affirming findings from other research in the field [6,27,36]. Comparative analysis 

showed that ductility in the 50, 70, and 95% fptk wires declined by 30, 45, and 48%, 

respectively. Interestingly, the corroded 0% fptk wire exhibited a 25% reduction in ductility, 

underscoring the detrimental impact of corrosion on material flexibility and resilience. 
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Direct tensile tests further elucidated the influence of tension levels on the mechanical 

behavior of the wires. A decrease in yield stress, modulus of elasticity, and ultimate tensile 

strain was noted, particularly in wires subjected to stress and corrosive environments. This 

reduction in mechanical integrity highlights the critical interplay between prestressing levels 

and corrosion in determining the wire's overall structural performance. 

 

  

(a) (b) 

Figure 5.9 - Comparison between the behavior unstressed (a) non-corroded and (b) corroded 
wire and corroded 70% fptk-stressed wire. 

 

Figure 5.9 presents a comparative analysis between (a) unstressed non-corroded and (b) 

corroded wires, as well as corroded wires under 70% fptk stress. The visual comparison starkly 

illustrates the impact of corrosion and stress on wire ductility and strength, providing a clear 

depiction of the material's degradation under varying conditions. It also Showcase the effect of 

prestressing and corrosion on the ultimate strength of the wires. The findings from this 

comparison reveal the localized nature of pitting corrosion and its influence on the wire's 

mechanical properties, including reductions in ultimate load and stress due to decreased cross-

sectional area [6,35,36,37]. The localized stress increase, resulting from the diminished cross-

section, does not significantly alter the average stress distribution along the wire's length but 

critically impacts its load-bearing capacity and ductility. 

This analysis highlights the presence of micro voids and microcracks in the corroded 

wires, factors contributing to potential failure due to stress concentration near cracked regions. 

The aggregation of micro voids near microcracks, indicative of significant material damage, 

underscores the loss of elastic modulus and elastic limit observed in corroded wires [32]. This 

phenomenon, more pronounced in corroded strands, accelerates the growth rate of surface 

microcracks compared to non-corroded strands, emphasizing the exacerbated vulnerability of 

corroded materials to mechanical failure [7,38,39]. 
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 CONCLUSIONS 

The comprehensive study presented in this research provides insights into the effects of 

stress corrosion cracking (SCC) on prestressed concrete wires, emphasizing the critical 

interplay between mechanical stress and corrosive environments. Through experimental design, 

including electron and optical microscopy analysis, corrosion rate evaluation, and mechanical 

strength assessment, it was delineated the nuanced impact of corrosion on the structural 

integrity and mechanical properties of cold-drawn carbon steel wires. The findings underscore 

the importance of considering both the chemical composition and the microstructural 

characteristics of materials in the context of their susceptibility to SCC. The observed decline 

in ductility and mechanical strength, particularly in wires subjected to pre-tension and corrosive 

environments, highlights the urgent need for robust protective strategies in prestressed concrete 

applications to mitigate the deleterious effects of corrosion. 

The study's experimental results, notably the localized nature of pitting corrosion and 

its influence on material properties, offer valuable contributions to the field of materials science 

and engineering. By demonstrating that the corrosion-induced damage does not uniformly 

affect the wire's stress distribution but significantly reduces its ultimate load-bearing capacity, 

it was provided a basis for reevaluating existing design and maintenance practices for 

prestressed concrete structures. Furthermore, the analysis of variance in corrosion rates across 

different pre-tension levels and exposure times presents a compelling argument for the inclusion 

of comprehensive corrosion assessment protocols in the standard testing regimen for 

prestressed concrete components. 

In conclusion, this research advances the understanding of SCC in prestressed concrete 

structures and sets the stage for the development of more durable materials and innovative 

protective measures. The insights gained from this study contribute to enhancing the longevity 

and safety of existing structures and inform the design and construction of future infrastructure 

projects. As the field continues to evolve, ongoing investigations into the mechanisms of 

corrosion and the development of advanced mitigation techniques will be essential in 

addressing the complex challenges posed by SCC, ensuring the resilience and reliability of 

prestressed concrete structures in diverse environmental conditions. 
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 DISCUSSION FOR CHAPTER 3 

5.6.1 Key Findings 

The experimental results revealed that SCC is a significant threat to the longevity and 

safety of prestressed concrete structures, particularly in environments where exposure to 

corrosive agents, such as chloride ions, is prevalent. The study showed that SCC can severely 

compromise the load-bearing capacity of prestressed concrete, leading to premature failure. The 

identification of specific conditions that exacerbate SCC, such as the presence of tensile stress 

combined with corrosive environments, provides engineers with critical information for 

designing more resilient structures. 

5.6.2 Implications 

The implications of these findings are far-reaching, particularly for the design and 

maintenance of infrastructure exposed to harsh environmental conditions. Engineers must 

account for the risk of SCC in their designs, incorporating protective measures such as 

corrosion-resistant materials, coatings, or cathodic protection systems. Additionally, the 

findings suggest that regular monitoring and maintenance are essential to detect early signs of 

SCC and prevent catastrophic failures. This research contributes to the broader understanding 

of corrosion-related failures in concrete structures and emphasizes the need for ongoing 

vigilance in managing these risks. 

5.6.3 Limitations 

The study's focus on specific environmental conditions, such as chloride exposure, may 

limit the generalizability of the findings to other corrosive environments or stress conditions. 

Additionally, while the experimental setup provided valuable insights into the mechanisms of 

SCC, real-world structures may experience a more complex interplay of factors that could 

influence the occurrence and progression of SCC. Further research is needed to explore these 

additional variables and their impact on the overall risk of SCC in prestressed concrete. 
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5.6.4 Future Work 

Future research should aim to expand the scope of this study by investigating SCC under 

a broader range of environmental conditions and stress scenarios. Exploring the effectiveness 

of various preventive measures, such as the use of corrosion inhibitors or alternative materials, 

could provide practical solutions for mitigating the risks associated with SCC. Additionally, 

long-term field studies on existing structures could offer valuable data to validate the laboratory 

findings and refine predictive models for SCC in prestressed concrete. 

 CONCLUSION FOR CHAPTER 2 

This chapter focused on the critical issue of stress corrosion cracking (SCC) in 

prestressed concrete, a phenomenon that poses significant risks to the durability and integrity 

of concrete structures. The experimental investigation conducted in this chapter provided 

valuable insights into the conditions under which SCC occurs and its effects on the structural 

performance of prestressed concrete. The findings highlight the importance of considering 

environmental factors, particularly in corrosive environments, when designing and maintaining 

prestressed concrete structures. This research underscores the need for robust design strategies 

and preventive measures to mitigate the risks associated with SCC, ensuring the long-term 

safety and reliability of these structures. 

Understanding the mechanisms and risks associated with SCC is crucial for developing 

durable and resilient concrete structures. However, predicting and mitigating such risks requires 

more than just understanding; it necessitates advanced analytical tools. 
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6 PREDICTIVE ANALYSIS OF CORROSION DYNAMICS IN PRESTRESSED 

CONCRETE EXPOSED TO CHLORIDE ENVIRONMENTS 

This chapter is published as an original research article in the Infrastructures Journal.  

https://doi.org/10.3390/infrastructures9080133 

 

PIEROTT, Rodrigo et al. Predictive Analysis of Corrosion Dynamics in 

Prestressed Concrete Exposed to Chloride Environments. Infrastructures 

Journal. 

 

Chapter 6 introduces predictive modeling as a powerful tool to analyze corrosion 

dynamics in prestressed concrete, particularly in chloride-rich environments. Building on the 

findings from the previous chapter, this chapter explores how these models can forecast the 

progression of corrosion, enabling more proactive and informed decisions in the design and 

maintenance of concrete structures. 

 

ABSTRACT 

This study investigates the corrosion behavior of 5 mm diameter prestressed wires in 

concrete beams under chloride attack, a prevalent issue for coastal infrastructure. The study 

simulated aggressive chloride environments to understand their impact on structural integrity 

and service life. Utilizing a combination of advanced digital image correlation (DIC) techniques 

and a novel machine learning-based predictive model, the research provides a nuanced analysis 

of the interplay between stress levels, corrosion rates, and concrete strength. Empirical findings 

reveal a significant correlation between increased prestress levels and accelerated corrosion, 

indicating a crucial consideration for the design and maintenance of prestressed concrete 

structures. Notably, this study found that beams with a 95% prestress level exhibited a corrosion 

rate of 0.64 mm/year, significantly higher than the 0.37 mm/year for non-prestressed beams. 

The predictive model’s accuracy was validated with a mean squared error of 0.517 and an R² 

value of 0.905, offering a valuable tool for quantifying the impact of corrosion. Therefore, the 

predictive model is a valuable tool for quantifying the impact of corrosion, enhancing the ability 

to assess and improve the durability of such infrastructure. This study’s insights highlight the 

necessity for a balanced approach to design and regular monitoring, especially in chloride-rich 
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environments. By helping to develop more resilient construction practices and contributing to 

sustainable development goals, this study can significantly impact the safety and service life of 

coastal bridges and structures, aligning with global efforts to create more sustainable and 

durable infrastructure. 

 

Keywords: 

Prestressed Concrete; Corrosion Dynamics; Structural Integrity; Predictive Modeling. 

 INTRODUCTION 

The deterioration of prestressed concrete structures in chloride-rich environments due 

to corrosion is a significant concern, affecting both the service life and safety of such 

infrastructure. This issue is crucial for civil and environmental engineering, where the 

degradation of infrastructure due to corrosion represents not only a safety hazard but also a 

substantial environmental and economic burden [1,2]. Recent studies have highlighted the use 

of advanced materials and coatings to mitigate corrosion, improving the durability of these 

structures in aggressive environments [3]. This issue is crucial for civil and environmental 

engineering, where the degradation of infra-structure due to corrosion represents not only a 

safety hazard but also a substantial environmental and economic burden. The corrosion of steel 

reinforcement in concrete structures significantly impacts their serviceability, safety, and 

service life, necessitating a comprehensive understanding of corrosion mechanisms and their 

impacts on developing sustainable civil engineering practices. 

Previous studies highlighted the severe consequences of corrosion in concrete 

structures. Ref. [4] noted that corrosion leads to cracking, bond strength reduction, and 

structural integrity loss, emphasizing the necessity of understanding corrosion rates to predict 

serviceability loss. Similarly, Ref. [5] explored steel corrosion mechanisms, particularly 

carbonation and chloride penetration, and discussed approaches for designing durable structures 

to extend their service life in aggressive environments. Additionally, the effectiveness of 

electrochemical repair methods and the performance of corrosion inhibitors were extensively 

studied, providing insights into the long-term protection of concrete structures against corrosion 

stimulation [6,7]. Recent advances in mechanical–transport–chemical modeling further 

enhanced our ability to evaluate the effectiveness of electrochemical repair methods for 

corrosion-induced cracking in concrete structures, providing a robust framework for optimizing 
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repair techniques and improving durability [1]. Moreover, the broader environmental 

implications associated with resource utilization, energy consumption, and emissions from 

manufacturing and construction activities further underscore the importance of addressing this 

issue [8]. 

The necessity of developing sustainable practices in civil engineering is evident, as 

discussed by [3], highlighting the importance of corrosion protection in sustainable energy 

systems and infrastructure. Another study reviewed the use of ionic liquids as sustainable 

corrosion inhibitors, emphasizing their potential to reduce environmental impacts and enhance 

material service life [9]. Furthermore, the application of artificial neural networks (ANNs) in 

predicting chloride diffusivity in concrete has shown promising results, enhancing the accuracy 

and robustness of corrosion modeling under various environmental conditions [2]. 

While many documented cases of corrosion pertain to post-tensioned members, pre-

tensioned members are also susceptible to corrosion, especially in chloride-rich environments. 

The literature includes instances of failures due to corrosion in pre-tensioned members, 

highlighting the need for focused research in this area. 

Research shows that prestressed concrete structures, particularly those containing 5 mm 

diameter wires, are highly susceptible to accelerated corrosion in chloride-laden environments, 

increasing the risk of structural collapse compared to reinforced con-crete [10]. Besides, models 

predicting the flexural strength of partially prestressed concrete structures emphasize the critical 

nature of corrosion in such environments [11]. In this context, methodologies for predicting the 

corrosion-free service life of concrete structures exposed to chlorides underscore the 

importance of regular maintenance and evaluation to prevent corrosion-related failures [12]. 

Despite this growing discussion, there remains a critical gap in understanding the 

specific corrosion dynamics in prestressed concrete [13], especially for small-er-diameter 

wires. Addressing this gap is essential for developing effective prevention and mitigation 

strategies that enhance structural service life and safety [14]. 

Therefore, this study explicitly simulates the aggressive chloride environments to 

replicate the corrosive conditions faced by coastal infrastructure closely. By focusing on the 

corrosion behaviors of prestressed concrete beams used in bridges and other coastal structures, 

this study aims to provide direct implications for such infrastructure’s maintenance, design, and 

service life. 

To achieve this goal, this study investigates the corrosion behavior of 5 mm diameter 

prestressed wires in chloride environments through a combination of empirical analysis and 

predictive modeling. This study uses advanced digital image correlation (DIC) techniques and 
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a novel machine learning-based predictive model to analyze the interplay between stress levels, 

corrosion rates, and concrete strength. 

To complement the experimental investigation of corrosion in prestressed concrete 

beams, we employed statistical and machine learning techniques to analyze the relationship 

between key variables and predict the structural integrity of the beams. These techniques 

provide a robust framework for understanding interactions and enhancing predictive accuracy. 

Ultimately, the novelty of this research is its direct contribution to developing more 

durable and environmentally sustainable construction materials and methods, enhancing the 

safety and integrity of concrete structures, and supporting the global movement towards 

environmentally responsible civil engineering practices. 

 BACKGROUND 

Corrosion in prestressed concrete primarily results from chloride ion penetration, which 

is prevalent in corrosive environments. When chloride ions breach the concrete cover and reach 

the steel reinforcement, it leads to the formation of rust. This process expands the volume of 

the steel, causing cracking and spalling of the concrete cover and reducing the effective cross-

sectional area of the reinforcement. Notably, [15] demonstrated that the loss of beam section 

and the breakage of prestressed steel strands due to corrosion significantly reduce beam 

stiffness and structural integrity. 

Recent advancements in digital image correlation (DIC) technology and machine 

learning havesignificantly enhanced the ability to analyze and predict corrosion be-havior in 

concrete structures. DIC technology provides high-resolution and non-contact measurement of 

surface deformation, enabling detailed monitoring of crack formation and propagation. 

Meanwhile, machine learning algorithms offer powerful tools for predictive modeling, capable 

of identifying complex patterns and relationships within large datasets to forecast corrosion 

impact with high accuracy. 

In addition, experimental studies have provided insights into how corrosion affects the 

mechanical performance of prestressed concrete beams. For example, two different studies 

investigated the flexural performance of post-tensioned beams under different corrosion and 

grouting conditions. These studies found that corrosion de-creased the flexural capacity and 

altered the crack patterns and load-deflection responses [16,17]. Additionally, [18] conducted 

experiments to evaluate the bending characteristics and bearing capacities of corroded beams, 
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highlighting the critical role of corrosion rates in determining the extent of structural 

degradation. In a similar manner, [19] provided an overview of modeling corrosion in steel and 

reinforced concrete and highlighted the role of environmental factors. Finally, [20] developed 

a finite element framework to evaluate the effects of various exposure conditions on corrosion, 

demonstrating the significance of integrating environmental stressors in predicting structural 

durability. 

Over time, several empirical models have been developed to predict the residual flexural 

capacity of corroded prestressed concrete beams. These models typically con-sider factors such 

as sectional area loss, mechanical property degradation, grouting defects, and bond 

deterioration due to corrosion. For instance, [17] proposed models that incorporate the reduction 

in the cross-sectional area of the steel reinforcement and the degradation of mechanical 

properties due to corrosion. Likewise, [21] pro-posed a method using machine learning to 

predict the service life of reinforced concrete structures. Additionally, [18] developed a model 

that evaluates the cooperative behavior between corroded steel and concrete, providing a 

comprehensive under-standing of how corrosion impacts the structural integrity of prestressed 

concrete beams. However, these models exhibit varying degrees of accuracy and often require 

calibration against experimental data to ensure reliability. 

In this context, the development of non-destructive testing techniques advanced the 

ability to detect and monitor corrosion in prestressed concrete structures. For ex-ample, a study 

published in 2013 explored the use of acoustic emission (AE) techniques for early-stage 

corrosion detection and crack classification [22], while [23] presented a review of the advances 

in the use of sensors for reinforcement corrosion monitoring. Their research demonstrated the 

effectiveness of AE in identifying corrosion, macrocracks, and crack propagation, providing a 

valuable tool for structural health monitoring and proactive maintenance. 

Nonetheless, the recent literature underscores the complexity of corrosion dynamics in 

corrosive environments for prestressed concrete structures. While our understanding of the 

mechanisms and impacts of corrosion and developing predictive models have come a long way, 

challenges remain in ensuring the accuracy and applicability of these models across diverse 

environmental conditions. The integration of advanced monitoring techniques, such as AE, 

offers promising avenues for enhancing the detection and mitigation of corrosion-related 

damage, ultimately contributing to the durability and safety of coastal infrastructure. 
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 PROPOSED METHODS 

The computational methodology component complements the experimental re-search 

by providing detailed analysis through computer-based modeling and simulations. This 

includes the EDA process, visual insights, model validation, and mathematical equations, as 

presented in Figure 6.1. Therefore, this study proposes processing the experimental data using 

statistical and computational techniques to identify patterns and correlations between stress 

levels, corrosion rates, and concrete strength. Based on the findings, a machine learning-based 

predictive model is developed to quantify the impact of corrosion. This model should be trained 

on the empirical data obtained from the experiments and validated through cross-validation 

techniques to ensure accuracy and reliability. 

 

Figure 6.1 - Proposed methodology of the study. 
 

The proposed methodology for this study is divided into two main components: 

experimental research and computational methodology. In the experimental research 

component, this study proposes a series of practical experiments focusing on the behavior of 

prestressed concrete beams under chloride attack. This involves several steps, as follows: (i) 

material and mix preparation, (ii) specimen production and corrosion, (iii) microstructural 

analysis, and (iv) deformation measurement and testing [24,25]. Thus, a thorough 

understanding of corrosion mechanisms [26] and their impact on concrete structures is crucial 

for advancing sustainable civil engineering practices aimed at reducing both the environmental 

footprint and ensuring structural safety [27]. 
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This study focuses on the corrosion of prestressed concrete structures, particularly on 

the behavior of 5 mm diameter prestressed wires in chloride environments. While there is 

extensive research on corrosion in reinforced concrete, studies specifically ad-dressing 

prestressed concrete are limited. Prestressed structures, due to their unique design and material 

properties, often exhibit different, sometimes more severe, corrosion responses compared to 

reinforced structures [22]. The collapse of the Ynys-y-Gwas bridge in the UK and the recent 

and notable example of the catastrophic impact of corrosion on prestressed concrete structures, 

the collapse of the Morandi Bridge in Italy in 2018, underscore the critical need to understand 

the specific corrosion dynamics in prestressed concrete, particularly in smaller diameter wires. 

The utility of guided ultrasonic waves in inspecting embedded tendons in post-tensioned 

bridges, a method driven by the necessity to prevent incidents like the Ynys-y-Gwas bridge 

collapse, was emphasized by [28]. These studies collectively stress the urgency of developing 

effective corrosion prevention strategies for prestressed concrete structures to avoid 

catastrophic failures. 

From an environmental standpoint, the significance of this research is twofold. 

Extending the lifespan of concrete structures through better understanding and prevention of 

corrosion formation can significantly reduce the need for frequent repairs and reconstructions 

[29], thereby minimizing the related environmental impacts. This approach is aligned with 

sustainable civil engineering principles, which emphasize durable and low-impact construction 

practices. Moreover, our study contributes to the critical knowledge base needed for the shift 

towards more sustainable construction practices. It underscores the possibilities for innovative 

designs and material choices that not only improve structural durability but also contribute to 

environmental conservation. 

In exploring the corrosion behavior of prestressed wires in chloride environments, this 

study aims to offer insights that could lead to advancements in both material science and 

construction methodologies. These advancements are expected to profoundly impact the field 

of civil engineering, contributing to the development of infrastructure that is more resilient and 

more in harmony with our environmental responsibilities. 

 MATERIALS 

This study utilized high-early-strength Portland cement (CPV ARI) with a density of 

3100 kg/m³ and Blaine fineness of 470 kg/m². Basalt-type coarse aggregate (unit weight of 2.73 
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g/cm³ and bulk density of 1.58 g/cm³) and natural quartz sand (unit weight of 2.63 g/cm³ and 

bulk density of 1.54 g/cm³) were chosen for their compatibility and performance. Silica fume 

(density of 2.20 g/cm³) and a superplasticizer based on modified carboxylic ether (density of 

1.070 g/cm³, pH 6) were also incorporated. The superplasticizer facilitated high water removal 

rates, ensuring workability without altering the setting time. The reinforcement used in the 

prestressed beams comprised notched ribbed CP-175 RB 5 wire, with a diameter of 5.0 mm and 

a tensile strength of 1860 MPa, as established through preliminary tensile tests and highlighted 

in Figure 6.2. 

  

 

Figure 6.2 - Stress versus strain of the prestressed reinforcement. 
 

6.4.1 Concrete  Proportions 

Two concrete mixes were prepared with target compressive strengths of 32 MPa and 68 

MPa, with subsequent testing to measure the actual compressive strengths for use in structural 

analyses. The 32 MPa mix had a 1:2.25:3.25 cement/sand/coarse aggregate ratio, 0.58 w/c ratio, 

and an 80 mm slump. The 68 MPa mix was denser with a 1:0.94:1.89 ratio, 0.34 w/c ratio, 0.25 

water/cementitious material factor, plus 0.5% superplasticizer and 10% silica fume, achieving 

a 90 mm slump. Both mixes included 2% sodium chloride (NaCl) by cement weight to initiate 

corrosion, as per Mancini et al. (2014).   Material volumes are presented in Table 6.1. 
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Table 6.1 - Amount of material used per m3 of concrete in the beams tested. 

 

 

6.4.2 Specimen Details and Casting 

Sixteen prestressed concrete beams (150 × 300 × 1500 mm) underwent three-point 

bending tests, as illustrated in Table 2. Classified as VX-Y-Z (X = concrete strength, Y = wire 

stress, Z = corrosion status), they varied in prestress and strength levels. Half had non-corroded 

(NCB), and half had corroded pre-cracked wires (CB). Beams were cast in a 3 m formwork, 

producing six at a time, using a hydraulic system for prestressing. After a 24 h demolding 

period, they were wet-cured for 28 days. The anchoring system of the prestressed wire and the 

metal formwork for concreting the prestressed beams are presented in Figure 6.3 and Figure 

6.4, respectively. 

 



117 
 

 

Figure 6.3 - Anchoring system of the prestressed wire. 
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Figure 6.4 - Cross   section of the beam, measuring 30 cm in height, 15 cm in width, 150 cm in 
length, and containing two reinforcements with a diameter of 0.5 cm. The metal formwork for 

casting multiple prestressed beams each time is also shown. 
 

The cross section of the beam models included four prestressed steel wires, positioned 

symmetrically around the neutral axis, with two wires in the upper layer and two in the lower 

layer, ensuring the uniform distribution of prestressing forces. 

We acknowledge that the a/d ratio used in the tests is below 5, indicating significant 

shear in addition to bending. Future studies in this area will need to adjust the beam model 
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proportions to ensure a/d ratios above 5 and span-to-height ratios over 20 to better isolate 

bending effects. 

 

Table 7.2 - Specimen details. 

 

 

In Table 2, the chloride concentration in the concrete was controlled by adding a 

specified amount of sodium chloride (NaCl) to the mix during the preparation phase, ensuring 

consistent chloride content across samples. 

The experimental setup expedited the corrosion of prestressed steel wires in concrete 

beams, beginning after a 28-day wet curing period. The purpose of this acceleration was to 

replicate natural corrosion rapidly and under controlled laboratory conditions, facilitating an in-

depth study of its effects. 

Corrosion was induced using a sophisticated electrochemical setup comprising four 

direct current (DC) power supplies connected in series. This system provided a range of 12 to 

30 volts, enabling a current of up to 1 ampere and a maximum voltage of 66 volts. Beams with 

a higher compressive strength of 68 MPa required this increased voltage to achieve significant 

current levels for corrosion, compared to their 32 MPa counterparts. 

In this setup, the prestressed steel wire within each beam was the anode, connected to 

the positive terminal of the power supply. This connection caused the wire to undergo 

accelerated oxidation, simulating the natural rusting process at a much faster rate. A less 

electronegative plate, introduced during casting and connected to the negative terminal, acted 

as the cathode, where reduction reactions typically occurred. 

This controlled electrochemical environment within each beam led to an accelerated 

onset and progression of corrosion on the steel wires. To monitor this process, corrosion 

potential (Ecorr) readings were systematically taken. Using two multimeters, the current for 
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each beam and Ecorr were recorded at 15 strategic points along the wire’s length, providing a 

detailed map of corrosion progression. 

Over 168 h, Ecorr readings were continuously recorded every 24 h. These readings 

showed significant potential differences, with −730 mV for 32 MPa beams and −510 mV for 

68 MPa beams at 95% fptk pre-tension of the wires, indicating varying corrosion rates and 

initiation points across different beam types. Figures 6.5, 6.6, and 6.7 show the beams connected 

to the power supplies and the corresponding Ecorr readings, illustrating the comprehensive 

monitoring and analysis carried out in this study. 

 

 

Figure 6.5 - Current applied to the beams being recorded by multimeters. 
 

Precise monitoring and control of the accelerated corrosion process were im-portant to 

accurately mimic real-world scenarios in prestressed concrete beams. This method provided 

insight into how concrete strength and prestressing levels affect steel wire corrosion. 

6.4.3 Instrumentation 

This study measured beam deformation during bending tests using digital image 

correlation (DIC), a non-contact optical metrology technique providing detailed de-formation 

and strain measurements. Beam surfaces were prepared with a high-contrast speckle pattern for 

effective DIC tracking, as shown in Figure 6. Cameras captured images before and after load 

application, and the DIC software analyzed the displacement and strain by tracking speckle 

movements, creating a detailed deformation map (Figure 6). This precise method offered a 
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comprehensive understanding of the beam’s behavior under stress, enhancing the study’s 

insights into beam response under bending loads. 

6.4.4 Digital Image Correlation (DIC) 

The experimental phase included measuring beam deformation during bending tests 

using digital image correlation (DIC), a non-contact optical method that extensively measures 

and visualizes material deformation and strain. The beams were pre-pared with a white base 

layer and black speckles to enhance the DIC system’s tracking accuracy. This preparation 

allowed the DIC software to precisely correlate changes before and after load application, 

providing crucial data on beam displacement and deformation (Figure 6). 

The models were tested to the point of failure. The observed failure modes included 

significant flexural cracking followed by concrete crushing in the compression zone and bond 

failure between the prestressed steel and concrete due to corrosion. 
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Figure 6.6 - Area selected for displacement analysis. 
 

After preparing the beams, two cameras captured images from different angles for 

digital image correlation (DIC) analysis. The DIC system compared pre- and post-load images 

to track speckle movements and calculate beam displacement and strain. This process produced 

a detailed strain distribution pattern for the loaded beam (Figure 6.6). 

6.4.5 Bending Test Procedure 

The bending tests involved 1500 mm long beams with a 1400 mm span between 

supports. Subjected to a three-point loading configuration to assess flexural strength and 

behavior, these tests formed a critical part of the experimental research (Figure 6.7). 

 

Figure 6.7 - Cracks in beam V32-0.5-NCB. 
 

The bending tests were performed at the UENF Civil Engineering Laboratory using a 

robust testing setup. This setup included a metal frame and a high-capacity hydraulic actuator, 

specifically an MTS® 244.41 model. The hydraulic actuator, coupled with a 500 kN capacity 

load cell, applied the load to the beams. The load was applied monotonically at a controlled rate 

of 0.1 mm/min. This slow and steady rate of loading was important for accurately observing 

the progression of cracks and other failure modes in the beams. 

The cross section of the beam models included four prestressed steel wires, positioned 

symmetrically around the neutral axis, with two wires in the upper layer and two in the lower 

layer, ensuring a uniform distribution of prestressing forces. The de-formation along the cross-
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section at mid-span in the 32 MPa beams is illustrated in Figure 6.8, while the bending crack 

pattern of the specimens is presented in Figure 6.9. 

 

 

Figure 6.8 - Deformation along the cross-section at mid-span in the 32 MPa beams. 
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VC32-0.95-NC VC32-0.95-C 
Figure 6.9 - Proposed methodology of the study. 

 

In Figure 6.9, the numbers on the beam indicate the measured fracture widths in 

millimeters, highlighting areas of significant stress concentration where the most severe cracks 

developed. 

All of the beams failed due to excessive deformation of the prestressed longitudinal 

reinforcement, demonstrating structural ductility. 

As the load was applied, the beams were closely monitored for any signs of cracking, 

deformation, or ultimate failure. The DIC system played a pivotal role in this phase, providing 

real-time data on the deformation patterns of the beams. This data was essential for 

understanding how the corrosion of the prestressed wires affected the structural behavior of the 

beams, particularly in terms of crack formation, propagation, and the overall flexural 

performance. The corrosion rate versus rupture deformation is simulated in Figure 10. 
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Figure 6.10 - Corrosion rate versus rupture deformation. 
 

Figure 6.10 presents the corrosion rate versus rupture deformation. The data illustrate 

the relationship between measured corrosion rates and the deformation at rupture of the beams, 

indicating how increased corrosion accelerates the reduction in de-formation capacity. 

The combination of the DIC instrumentation and the controlled bending test setup 

allowed for a comprehensive analysis of the impact of corrosion on the prestressed concrete 

beams. The data gathered provided insights into the changes in mechanical properties due to 

corrosion, contributing significantly to the study’s findings on the durability and resilience of 

prestressed concrete structures in corrosive environments. 

6.4.6 Metallographic Characterization of the Wires 

The metallographic characterization of the prestressed steel wires was part of the 

experimental research, as it provided critical insights into the microscopic changes and damage 

mechanisms caused by corrosion [30]. This characterization involved a series of analyses using 

optical microscopy, confocal microscopy, and scanning electron microscopy (SEM). These 

techniques were instrumental in identifying and understanding the microstructural alterations 

in the wires due to corrosion processes. Figure 6.10 illustrate the significant differences in 

corrosion morphology and potential for both 32 MPa and 68 MPa beams. 

Before the microscopic examination, the prestressed wires were carefully extract-ed 

from the concrete beams to preserve the integrity of the corrosion layer. This extraction was 

carried out meticulously to avoid any additional mechanical damage that could interfere with 

the accuracy of the metallographic observations.  

6.4.7 Optical Microscopy Analysis 

The initial examination was conducted using optical microscopy. This phase in-volved 

observing the cross-section of the corroded wires from the 32 MPa and 68 MPa beams. In the 

optical microscopy images (Figure 6.11), a distinction was evident between the dark and light 

regions, representing the embedding product of the sample and the intact wire, respectively. A 

key observation was the identification of areas with corrosive characteristics between the 

embedding product and the wire, indicating the extent and nature of the corrosion [32]. The full 
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perimeter of the wire was analyzed to assess the uniformity of corrosion and identify any 

surface layer loss, characterized by protrusions and indentations. The corrosion potential is 

illustrated in Figure 6.12 

 

  
(a) (b) 

  
(c) (d) 

Figure 6.11 - Optical microscopy images of corrosion from the environment of 32 MPa beams at 
different stress levels: (a) V32-0-CB; (b) V32-0.5-CB; (c) V32-0.7-CB; (d) V32-0.95-CB. 

 

Figure 6.11 shows the optical microscopy images for the 32 MPa beams, revealing 

distinct corrosion characteristics at different stress levels. The dark regions represent the 

corrosion products, while the light regions indicate the intact wire material. The extent of 

corrosion increases with higher stress levels, as indicated by the larger dark regions in the 

higher-stressed samples. 
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(a) 

 

(b) 

Figure 7.12 - Corrosion potential (Ecorr) measurements for 68 MPa beams at various stress 
levels. 

 

In contrast, Figure 6.12 shows the corrosion potential (Ecorr) for both 32 MPa and 68 

MPa beams at various stress levels. For the 32 MPa beams, the corrosion potential readings 

indicate a higher susceptibility to corrosion compared to the 68 MPa beams. The Ecorr values 

for 32 MPa beams at 95% fptk pre-tension are significantly lower, indicating a more advanced 

corrosion state. 
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After an optical analysis, confocal microscopy offered a clearer view of corrosion 

morphology, detailing oxide layer thickness variations across different wire stress levels, 

especially between 70 and 95% fptk in 32 MPa beams (Table 3). 

 

Table 7.3 - Oxide layer measurement. 

 

 

The final characterization phase used SEM analyses for a detailed, magnified view of 

wire surfaces, focusing on beams with pronounced corrosion (Figure 6.13). SEM revealed 

microstructural changes, corrosion patterns, and variations in porosity and corrosion product 

concentration, particularly in highly corroded beams like V32-0.5-CB, highlighting the 

advanced corrosion stage and stress-related surface cracks. 

 

  
(a) (b) 
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(c) (d) 

Figure 6.13 - Appearance of the corroded wire cross-section: (a) V32-0-CB; (b) V32-0.5-CB; (c) 
V32-0.7-CB and (d) V32-0.95-CB, 400× magnification. 

 

These metallographic analyses collectively provided a comprehensive under-standing 

of the corrosion mechanisms at play [33]. They revealed how different stress levels and 

environmental conditions influenced the corrosion behavior of the pre-stressed wires. This 

detailed examination was crucial for correlating the macroscopic behavior observed in the 

bending tests with the microscopic changes occurring in the material, thereby contributing 

significantly to the overall findings of the study (Figure 6.14). 

 

(a) (b) 
Figure 6.14 - Details of the wires extracted from the fck 32 MPa beams, after cleaning. 
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6.4.8 Statistical and Machine Learning Analysis 

This study employed advanced statistical and machine learning techniques to develop 

predictive models for the ultimate bending moment of prestressed concrete beams. The primary 

focus was on understanding the impact of concrete strength, reinforcement strength, and 

corrosion on the structural integrity of these beams. 

A statistical analysis methodology was designed for thorough interpretation and 

validation of data from both experimental and computational phases of the research. Initially, 

the analysis involves an extensive data collection process, gathering data from various sources, 

including material property measurements, corrosion rate assessments, beam deformation 

metrics, and computational model outputs. After data collection, data preparation focused on 

accuracy and completeness. This involved identifying and correcting any errors or 

inconsistencies in the data, converting the data into a format suitable for analysis through 

normalization or categorization, and identifying and understanding data points that significantly 

differ from the rest of the data set. 

Descriptive statistics provided a preliminary overview of the data, which was critical 

for establishing a baseline understanding [33]. This includes calculating the average, median, 

and mode to identify the central value in the data, as well as assessing the spread or dispersion 

of the data through standard deviation and variance. The distribution of the data was analyzed 

using histograms and box plots to under-stand its shape and spread. 

The inferential statistics stage applied statistical methods to infer properties about a 

population based on sampled data. This includes conducting tests like t-tests, chi-square tests, 

or ANOVA, depending on the type of data type, to assess statistical significance. Regression 

analysis, both linear and nonlinear, was employed to under-stand relationships between 

variables such as concrete strength, corrosion rate, and the material’s properties. The correlation 

analysis measured the strength and direction of relationships between important variables. 

For the complex data (increasing corrosion rate), advanced statistical techniques were 

used, including multivariate analysis methods like principal component analysis or factor 

analysis, to understand the structure of complex data sets, while time-series analysis methods 

like ARIMA models were used to understand temporal trends and patterns. Python’s statistical 

libraries were used for these analyses, offering functionalities for complex calculations, 

graphical data representation, and model building. 

In the final phase, the outcomes of the statistical analyses were interpreted in relation to 

the research objectives. This includes contextualizing the results within the broader context of 
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the study’s goals, identifying key patterns, trends, and anomalies, and discussing the 

implications of the statistical results for understanding corrosion in prestressed concrete 

structures. 

Throughout the process, measures were taken to ensure the rigor and reliability of the 

statistical analysis. This includes verifying the validity of the assumptions under-lying each 

statistical method, identifying and reporting potential errors or uncertain-ties in the analysis, 

and maintaining a transparent approach to ensure the replicability of the analysis by other 

researchers. This detailed and methodical approach aims to provide a deep and accurate 

interpretation of the data, supporting the research findings with robust statistical evidence. 

6.4.9 Statistical Exploratory Data Analysis of Concrete Beam Data 

To complement the experimental investigation of corrosion in prestressed concrete 

beams, we employed statistical and machine learning techniques to analyze the relationship 

between key variables and predict the structural integrity of the beams. These techniques 

provide a robust framework for understanding complex interactions and enhancing predictive 

accuracy. 

Exploratory data analysis (EDA) is an indispensable phase in the data analysis process, 

laying the groundwork for subsequent statistical analysis. It involves a range of techniques 

aimed at understanding the distributions of variables, detecting outliers, uncovering patterns, 

and identifying relationships between variables within a dataset. 

Through graphical representations such as histograms, box plots, scatter plots, and more 

sophisticated visualizations (as used in this methodology), EDA provides a visual insight into 

the data, offering an intuitive understanding of its main characteristics. Summary statistics 

further complement this by quantifying central tendencies, dispersion, and other key attributes. 

EDA is a continuous process, guiding and informing the modeling choices, hypothesis 

formulation, and data preprocessing decisions. Its iterative nature helps in refining research 

questions, validating assumptions, and ensuring that the conclusions drawn are based on a 

comprehensive and nuanced understanding of the data’s under-lying structure. 

Exploratory data analysis (EDA) is an indispensable phase in the data analysis process, 

setting the stage for subsequent statistical analysis. It employs a range of techniques aimed at 

understanding variable distributions, detecting outliers, uncovering patterns, and identifying 

relationships within a dataset. Through graphical representations such as histograms, box plots, 
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scatter plots, and sophisticated visualizations, as implemented in the current analysis, EDA 

offers visual insight into the data, providing an intuitive grasp of its main characteristics. 

Summary statistics complement these visual insights by quantifying central tendencies, 

dispersion, and other key attributes. 

EDA is not just a preliminary step but a continuous process that guides and in-forms 

modeling choices, hypothesis formulation, and data preprocessing decisions. Its iterative nature 

aids in refining research questions, validating assumptions, and ensuring that conclusions are 

drawn from a comprehensive and nuanced understanding of the data’s underlying structure. 

Transitioning from theory to practice, the code for our EDA follows a structured 

approach. It begins by setting up a DataFrame with sample data on concrete beams, detailing 

attributes like concrete strength, reinforcement strength, corrosion rate, and bending moment. 

This DataFrame, named merged_df, serves as the basis for all subsequent analyses. Initially, 

the code calculates basic statistics such as the mean and standard deviation for all numerical 

columns in the DataFrame, providing an initial quantitative understanding of each variable. 

The code then presents the frequency of different values through histograms for each 

numerical variable, helping visualize data distribution. It assesses the relation-ships between 

variables using a correlation matrix visualized as a heatmap, making it easier to see any strong 

relationships or patterns. To identify outliers or unusual values, the code generates boxplots for 

each numerical variable. These boxplots effectively dis-play the median, quartiles, and potential 

outliers, offering a visual means to identify data points that stand out. 

Further, the code extracts additional information from the ‘Beam_ID’ column, 

specifically the prestress level and corrosion status, adding these as new columns to the 

DataFrame. For a deeper analysis, it runs two statistical tests: an independent t-test and a Mann-

Whitney U test. These tests determine if the differences in bending moments between corroded 

and non-corroded beams are statistically significant. The code calculates the average bending 

moments for both groups and presents them along with the test results, indicating the 

significance of the differences. 

Finally, the algorithm visualizes the data by creating boxplots to compare bending 

moments between corroded and non-corroded beams, as well as a scatter plot to ex-amine the 

relationship between prestress level and the ultimate bending moment while considering the 

corrosion status. This approach combines statistical calculations and visualizations to 

thoroughly explore and understand the dataset, paving the way for informed modeling and 

analysis. 
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The pseudocode that presents the EDA developed using this methodology can be seen 

in Figure 6.15. 

 

 

Figure 6.15 - Pseudo algorithm exploratory data analysis. 
 

The process to develop a predictive model of concrete beam strength begins with 

creating a DataFrame using CSV files containing detailed attributes of concrete beams. These 

attributes include concrete strength, reinforcement strength, corrosion rate, and the ultimate 

bending moment, which is the primary variable of interest, indicating the structural integrity 

and safety of the beams. The initial step involves merging data from different sources based on 

a common ‘Beam_ID’, ensuring a comprehensive dataset for analysis (Figure 6.16). 
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Figure 6.16 - Vertical displacement at the center of the span of the non-corroded 68 MPa beams. 
 

To capture the complex relationships and physical characteristics influencing beam 

strength, new features ‘A’, ‘B’, ‘C’, and ‘D’ are engineered and are written as, 

𝑄 = 𝑇 + 1 

𝐴 = 𝑓
ଶ/ଷ 

𝐵 =  
𝑓௬

𝑄൘  

𝐶 =  
𝑓௧

𝑄൘  

𝐷 = − 𝑇 

where 

𝑇 represents the adjusted corrosion rate, being the average corrosion rate measured 

in mm/year from the dataset; 

𝑓 is the concrete strength at 28 days; 

𝑓௬ is the yield steel resistance from the prestressed reinforcement; 

𝑓௧ is the prestressed applied in the reinforcement; 

These features are derived using domain-specific transformations that reflect how 

various factors, like concrete strength, reinforcement tension, and corrosion rates, interact to 

affect the beam’s bending moment. Standardizing these features is crucial for effective 

modeling, especially given the wide range of data. Therefore, the Standard-Scaler is employed 

to normalize the features, removing the mean and scaling them to unit variance. 

The core of the predictive analysis is built on two regression techniques: linear 

regression and lasso regression. Linear regression is implemented to model the linear 
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relationship between the engineered features and the ultimate bending moment. To assess the 

model’s robustness and its ability to generalize to unseen data, 10-fold cross-validation is 

performed using cross_val_score, providing a reliable estimate of the model’s predictive 

performance. 

Evaluating the model’s accuracy and fit is essential. The mean squared error (MSE) and 

R² were calculated for the linear regression model. The MSE provides a measure of the average 

squared difference between the observed actual outcomes and the model’s predictions, with a 

lower value indicating a better fit. On the other hand, R² indicates the proportion of variance in 

the ultimate bending moment that is predictable from the features, with a higher value 

suggesting a better explanatory model. 

To enhance the model and potentially reduce overfitting, a lasso regression was also 

used. Lasso introduces regularization to the model, adding a penalty equivalent to the absolute 

value of the magnitude of the coefficients. This not only helps prevent overfitting but also 

performs feature selection by shrinking some coefficients to zero. A range of alpha values 

(regularization strengths) was considered, and GridSearchCV was employed to find the optimal 

alpha that balances model complexity and accuracy. The best Lasso model is then evaluated, 

calculating its MSE and R² to understand its performance. 

The equations representing the predicted ultimate bending moment for both the linear 

and lasso regression models were developed. These equations highlight the in-fluence of each 

feature on the predicted outcome, offering insights into the underlying physical phenomena. 

The performance metrics and regression equations are presented, providing a comprehensive 

overview of the models’ predictive capabilities and the relative importance of each feature in 

determining the ultimate bending moment of concrete beams. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑆𝐸: 2.426 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑆𝐸: 2.580 
𝐵𝑒𝑠𝑡 𝑎𝑙𝑝ℎ𝑎: 0.013 
𝐵𝑒𝑠𝑡 𝑀𝑆𝐸: 1.505 
𝐿𝑎𝑠𝑠𝑜 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑆𝐸: 0.517 
𝐿𝑎𝑠𝑠𝑜 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅2: 0.905 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡: =  16.13 + (0.63 ×  𝐴)  + (1.31 ×  𝐵

Through this methodical approach, this study predicted the structural behavior of 

concrete beams under corrosion condition as can be seen below. 

𝑃௨ = 16.13 +
1.31 × ඥ𝑓௬ + 1.12 × 𝑓௧

(𝑇 + 1)
0.63 × 𝑓

ଶ/ଷ − 0.21 × 𝑇 

The pseudocode for the ultimate bending moment prediction is presented in Figure 6.17. 
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Figure 6.17 - Pseudo algorithm to obtain the ultimate bending moment based on the 
methodology developed in this study. 

 

Experimental results served as the training data for the machine learning models. For 

example, the corrosion rates measured during the experiments were used to train the models to 

predict the ultimate bending moment. This integration ensures that the models are grounded in 

empirical evidence. 

 RESULTS 

This study investigated the effects of corrosion on prestressed concrete beams with 5 

mm diameter wires, revealing key insights. Detailed in Tables 4 and 5, the results indicate the 

complex interplay between corrosion, concrete strength, and prestressing levels, significantly 

impacting structural integrity. 
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Our findings, as shown in Table 4, demonstrate considerable corrosion rates across all 

sample groups, with a greater impact in beams under higher pre-tension. An ANOVA with a 

5% significance level confirmed the substantial influence of stress on wire weight loss, 

suggesting that corrosion accelerated under conditions of increased stress. This phenomenon is 

partly due to decreased capillary porosity in stronger beams, which impedes oxygen flow and 

exacerbates the corrosion process. 

Deflection versus load-like curves (Figures 6.8, 6.10, and 6.15) offered critical insights 

into the beams’ structural behavior under load. Intriguingly, both corroded and non-corroded 

prestressed beams displayed similar displacement patterns pre-flexural cracking, implying that 

initial stiffness is largely unaffected by corrosion. However, a marked decline in post-cracking 

stiffness and load-bearing capacity was observed with increased corrosion, as higher corrosion 

rates significantly reduced post-cracking stiff-ness, highlighting the detrimental impact of 

corrosion on structural performance. 

The bond strength between steel wires and concrete, crucial for structural integrity, 

deteriorated with corrosion. This was evidenced by the kinematics of critical flexural crack 

openings (Figures 6.7 and 6.9), where corroded beams reached ultimate tensile stress quicker 

than non-corroded ones, resulting in premature cracking. The compromised bond strength and 

loss of prestressing due to corrosion culminated in more ex-tensive crack openings and reduced 

overall structural integrity, with cracking patterns (Figure 6.10) showing more extensive 

propagation in corroded beams. 

 

Table 6.4 - Corrosion rate results. 

 

Table 6.5 presents a discernible decrease in the load-bearing capacity of corroded 

beams. Corroded V32 beams exhibited a 23% to 34% reduction in ultimate load com-pared to 

non-corroded ones, while V68 beams showed a 9.5% to 16% decline. This significant reduction 
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is an important factor in the design and assessment of prestressed concrete structures, 

underscoring the urgency for effective corrosion mitigation strategies. 

 

Table 6.5 - Experimental Pfiss and Pult values of the tested beams. 

 

The observed deformation patterns (Figure 6.15) and specific strain values at breaking 

load (Table 6.5) corroborate the loss of tensile strength in wires due to corrosion. This reduction 

in deformation capacity has profound implications for the durability and service life of 

prestressed concrete structures, emphasizing the need for designs that account for long-term 

corrosion impacts. Table 6.6 presents the specific strain of the reinforcement for each beam’s 

ultimate load capacity. 

 

Table 6.6 - Specific strain of the reinforcement for ultimate load. 

 

Our findings underscore the critical importance of corrosion resistance in sustainable 

civil engineering practices. By enhancing our understanding of corrosion dynamics in 

prestressed structures, engineers can develop more resilient and durable de-signs, reducing the 
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need for frequent repairs and replacements and, consequently, minimizing the environmental 

footprint of construction activities. 

Incorporating statistical and machine learning analyses, we’ve identified a consistent 

decrease in load-bearing capacity and tensile strength in corroded beams. This predictive 

insight, derived from a rigorous data-driven approach, not only validates our experimental 

observations but also provides a quantitative framework for assessing and mitigating corrosion 

impact in prestressed concrete structures. 

Correlation analyses revealed strong links between corrosion rates and ultimate bending 

moments. Higher corrosion rates were associated with lower bending moments, indicating a 

detrimental effect of corrosion on structural integrity. 

The linear regression model achieved an R² of 0.86, indicating a strong linear 

relationship between the input features and the predicted bending moment. The lasso regression 

model further improved accuracy, with an R² of 0.905 and reduced MSE. 

These results not only highlight the need for effective corrosion mitigation strategies but 

also pave the way for future research and development in corrosion-resistant materials and 

design practices. Our study contributes to a more sustainable and resilient built environment, 

aligning with global efforts to enhance infrastructure service life and performance. 

 DISCUSSION 

This study developed a novel predictive model to quantify the impact of corrosion on 

prestressed concrete beams, focusing on the relationship between stress levels, corrosion rates, 

and concrete strength. Through rigorous empirical analysis and advanced machine learning 

algorithms, the model provides a robust numerical equation to assess structural integrity and 

service life of prestressed concrete beams, marking a significant advancement in civil 

engineering. 

The simulation conducted in the laboratory focused primarily on chloride-induced 

corrosion. Factors such as Mg, K, Ca, SO4 ions, dissolved oxygen, marine organisms, 

temperature, hydrostatic pressure, and tidal action were not included. These addition-al 

variables significantly impact corrosion and should be considered in future studies for a more 

comprehensive simulation. The model accurately integrates variables such as concrete strength 

(𝑓𝑐), yield strength of prestressed reinforcement (𝑓𝑝𝑦), prestress applied (𝑓𝑝𝑡), and average 

corrosion rate (𝑇𝑐𝑜𝑟𝑟) to predict the ultimate bending moment (𝑃𝑢). 
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The empirical analysis revealed that higher stress levels and concrete strengths 

significantly influence corrosion rates and structural integrity. Beams with 95% pre-stress level 

exhibited a corrosion rate of 0.64 mm/year, compared to 0.37 mm/year for non-prestressed 

beams, indicating that higher prestress levels exacerbate the corrosion process. These findings 

are consistent with previous studies that highlight the vulnerability of prestressed concrete in 

chloride environments. 

Digital image correlation (DIC) provided insights into deformation and crack patterns, 

showing significant reductions in post-cracking stiffness and load-bearing capacity in corroded 

beams. For instance, the ultimate load capacity of 32 MPa beams decreased by 23% to 34% due 

to corrosion, while 68 MPa beams showed a reduction of 9.5% to 16%. These results underscore 

the critical importance of monitoring and maintaining prestressed concrete structures in 

corrosive environments. 

The machine learning-based predictive model achieved a mean squared error of 0.517 

and an 𝑅2 value of 0.905, indicating high accuracy in predicting the ultimate bending moment 

of corroded beams. This capability can significantly enhance corrosion risk assessment and 

management in coastal infrastructure. The model’s practical application lies in its ability to 

inform maintenance schedules and assess the remaining service life of existing structures. 

The statistical and machine learning analysis confirms the significant impact of 

corrosion on the structural integrity of prestressed concrete beams. The predictive models 

developed provide a valuable tool for assessing the potential degradation of such structures over 

time, enabling more proactive maintenance strategies. 

Our findings highlight the need for regular maintenance and inspection of pre-stressed 

concrete structures in corrosive environments. The predictive models developed can serve as a 

basis for creating maintenance schedules and assessing the remaining service life of existing 

structures. 

Future research should refine the model by incorporating additional environmental 

factors like temperature and humidity. Exploring advanced materials and coatings to mitigate 

corrosion in prestressed concrete structures would also be beneficial. Inte-grating real-time 

monitoring systems with predictive analytics could further enhance the durability and safety of 

coastal infrastructure. 

By enhancing our understanding of corrosion dynamics and developing predictive tools, 

this research contributes to more resilient and durable construction practices, ultimately 

supporting the goal of sustainable infrastructure development. 



141 
 

 CONCLUSIONS 

This study introduced a novel predictive model to quantify the impact of corrosion on 

prestressed concrete beams, emphasizing the intricate relationship between stress levels, 

corrosion rates, and concrete strength. Developed through rigorous empirical analysis 

combined with advanced machine learning algorithms, the model pro-vides a robust numerical 

equation to assess structural integrity and service life, representing a significant analytical 

advancement in civil engineering. By enhancing our understanding of corrosion dynamics and 

developing predictive tools, this research contributes to more resilient and durable construction 

practices, ultimately supporting the goal of sustainable infrastructure development. The 

model’s technical accuracy and precision are its core strengths, effectively integrating complex 

variable relation-ships into a practical tool for industry professionals. This development marks 

a step forward in predictive analytics for assessing the degradation of prestressed concrete 

structures. The formula used to predict the ultimate bending moment (Pu) is given by 

𝑃𝑢 = 16.13 + 𝑇𝑐𝑜𝑟𝑟 + 11.31 × 𝑓𝑝𝑦 + 1.12 × 𝑓𝑝𝑡𝑘 + 0.63 × 𝑓𝑐2/3

− 0.21 × 𝑇𝑐𝑜𝑟𝑟 

The empirical analysis revealed that higher stress levels and concrete strengths 

significantly influence corrosion rates and the structural integrity of the beams. The ultimate 

load capacity of beams with higher prestress levels exhibited significant reductions due to 

corrosion, highlighting the importance of regular maintenance and proactive measures. For 

instance, Figure 6.11 shows the optical microscopy images for the 32 MPa beams, revealing 

distinct corrosion characteristics at different stress levels. In Figure 6.12, the corrosion potential 

(Ecorr) readings for both 32 MPa and 68 MPa beams indicate varying susceptibility to 

corrosion, with 32 MPa beams showing higher corrosion rates at 95% fptk pre-tension. 

These findings underscore the need for effective corrosion mitigation strategies and 

provide a quantitative framework for assessing and managing the risk of corrosion in 

prestressed concrete structures. Future research should focus on refining the model and 

exploring innovative materials and monitoring techniques to enhance the durability and 

sustainability of coastal infrastructure. The findings also demonstrated pronounced corrosion 

rates across all sample groups, with an accentuated effect in beams under higher pre-tension, as 

detailed in Tables 6.4 and 6.5. The de-tailed analysis of deflection versus load-like curves 

(Figures 6.8, 6.10, and 6.15) offered critical insights into the beams’ structural behavior under 

load, highlighting the accelerated corrosion in higher stressed beams and the corresponding 

reduction in structural integrity. 



142 
 

The machine learning analysis demonstrates the effectiveness of integrating statistical 

and machine learning techniques with experimental data to predict the impact of corrosion on 

structural integrity. Future research should explore additional environmental factors and 

advanced modeling techniques to further enhance predictive accuracy. 

The bond strength between steel wires and concrete, crucial for structural integrity, 

deteriorated with corrosion. The kinematics of critical flexural crack opening (Figures 6.7 and 

6.9) showed that corroded beams reached ultimate tensile stress quicker than non-corroded 

ones, resulting in premature cracking. The compromised bond strength and loss of prestressing 

due to corrosion culminated in more extensive crack openings and reduced overall structural 

integrity. 

Future research should focus on refining these predictive models and investigating novel 

approaches to addressing the pervasive challenge of corrosion in corrosive environments. By 

continuing to improve the model’s precision and applicability, the field can progress toward 

more durable and sustainable construction practices, ultimately enhancing the service life and 

safety of coastal infrastructure. 

 DISCUSSION OF CHAPTER 6 

6.8.1 Key Findings 

The predictive models developed and applied in this chapter successfully simulated the 

behavior of prestressed concrete when exposed to chloride environments, offering accurate 

forecasts of corrosion rates and their impact on structural performance. The models identified 

key factors influencing corrosion dynamics, such as chloride concentration, concrete 

permeability, and environmental conditions, enabling more precise predictions of when and 

where corrosion-related damage is likely to occur. The accuracy of these predictions was 

validated against empirical data, confirming the models’ reliability as tools for assessing the 

long-term durability of prestressed concrete structures. 

6.8.2 Implications 

The implications of this research are significant for the design and maintenance of 

infrastructure in chloride-rich environments. By integrating these predictive models into the 
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design process, engineers can better anticipate the effects of chloride-induced corrosion and 

implement design strategies that mitigate these risks. For instance, the models can inform 

decisions on material selection, concrete mix design, and the application of protective measures 

such as sealants or corrosion inhibitors. Furthermore, the ability to predict the timing and extent 

of corrosion damage allows for more effective maintenance planning, potentially extending the 

service life of structures and reducing overall lifecycle costs. 

6.8.3 Limitations 

While the predictive models offer robust insights, their accuracy is dependent on the 

quality and comprehensiveness of the input data, such as chloride concentration levels and 

environmental conditions. In real-world applications, variations in these parameters could 

affect the models’ predictions. Additionally, the models are based on assumptions that may not 

fully capture the complexities of actual corrosion processes in situ, particularly in 

heterogeneous or dynamically changing environments. Future research should aim to refine 

these models to account for such complexities, enhancing their applicability across a wider 

range of scenarios. 

6.8.4 Future Work 

Future research could focus on enhancing the predictive models by incorporating 

additional environmental factors, such as temperature fluctuations, humidity, and the presence 

of other corrosive agents. Additionally, expanding the models to include dynamic simulations 

that account for changes in environmental conditions over time could improve their accuracy 

and reliability. Long-term field studies that monitor corrosion progression in real structures 

would also provide valuable data for validating and refining these models. Finally, exploring 

the integration of these predictive tools into comprehensive asset management systems could 

optimize maintenance schedules and resource allocation, further extending the service life of 

prestressed concrete structures. 
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 CONCLUSION FOR CHAPTER 6 

This chapter presented a detailed predictive analysis of corrosion dynamics in 

prestressed concrete exposed to chloride-rich environments. Using predictive models, the study 

provided a more nuanced understanding of how chloride ions penetrate concrete, accelerate 

corrosion, and ultimately affect the structural integrity of prestressed concrete. The findings 

demonstrate the effectiveness of these predictive models in forecasting corrosion rates and the 

progression of damage, offering engineers valuable tools for proactive maintenance and design. 

This research underscores the critical importance of considering chloride-induced corrosion in 

the lifecycle management of prestressed concrete structures, particularly in coastal or industrial 

environments where chloride exposure is prevalent. 

The predictive models developed in this chapter offer valuable tools for anticipating and 

mitigating corrosion-related damage. As we continue to explore innovations in concrete design, 

attention now turns to enhancing structural performance through improved reinforcement 

strategies. 
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7 ENHANCING STRUCTURAL ANALYSIS OF REINFORCED CONCRETE 

COLUMNS: A STUDY ON THE IMPACT OF WELDED STEEL MESH 

STIRRUPS 

This chapter is being published as an original research article in Engineering 

Sustainability. 

 

PIEROTT, Rodrigo et al. Enhancing Structural Analysis of Reinforced 

Concrete Columns: A Study on the Impact of Welded Steel Mesh Stirrups. In: 

Engineering Sustainability. 

 

Chapter 5 focuses on one such reinforcement strategy: the use of welded steel mesh 

stirrups in reinforced concrete columns. This chapter examines how this approach can 

significantly enhance the load-bearing capacity and ductility of concrete columns, offering a 

practical solution to the challenges of designing resilient structures. 

 

ABSTRACT 

This study formulates an empirical equation to predict the Confinement Effect of Welded Steel 

Mesh Stirrups (Cwsm) in reinforced concrete columns, leveraging a substantial dataset and 

examining relationships between experimental ultimate loads, concrete strength, theoretical 

predictions, and stirrup volume ratios. Advanced statistical and machine learning methods, 

including Polynomial Features and Linear/Nonlinear Regression, address data normality and 

enhance model accuracy. Rigorous validation via normality tests and residual analysis ensures 

the model's reliability. A crucial element is a comparative analysis with existing studies, 

proving the equation's efficacy and adaptability in real-world scenarios. An experimental 

program further validates the model, testing manufactured concrete columns against established 

data. This comprehensive approach demonstrates the equation's robustness and its potential to 

optimize column design for improved sustainability and efficiency in structural engineering. 

 

Keywords: 

Reinforced Concrete Columns; Welded Steel Mesh Stirrups; Structural Behavior Analysis; 

Empirical Equation Development; Confinement Effect; Machine Learning in Structural 

Engineering. 
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 INTRODUCTION 

The evolution of concrete technology has led to an increased utilization of high-strength 

concretes in modern construction, driven by the demand for enhanced compressive strength 

(Mwafy et al., 2014). This shift emphasizes not only inherent strength but also long-term 

durability and multifunctionality of reinforced concrete structures (Wangler et al., 2019). These 

structures are expected to support larger clear spans and endure higher load capacities, 

presenting new challenges and opportunities in architectural and structural design (Cheng et al., 

2023). 

 

Table 7.1 - Dimensions and criteria to be considered in the analysis 

 

 

In this context, building columns, which are fundamental in resisting compressive 

forces, have received considerable attention. These columns typically employ longitudinal 

reinforcements to facilitate load absorption, while transverse reinforcements are used for 

positioning and improving ductility through confinement. The mechanical properties of 

concrete, particularly its strength and deformability, play a critical role in determining the 

behavior of columns (Hou et al., 2019). The mechanical properties of concrete, particularly its 

strength and deformability, is important in determining the behavior of building columns, which 

are fundamental in resisting compressive forces (Benzaid et al., 2010). Longitudinal 

reinforcements are employed to facilitate load absorption, while transverse reinforcements are 

used for positioning and improving ductility through confinement (Zhang et al., 2019). 

However, the reduced ductility of high-strength concrete columns compared to other reinforced 

concrete elements often leads to brittle concrete rupture, especially under high stress or load 

conditions. 

The role of transverse reinforcement in mitigating these challenges is of paramount 

importance.  

The spacing of stirrups, a key component of transverse reinforcement, can lead to 

unconfined concrete areas, which may become vulnerable to detachment and high internal 
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stress gradients under load, compromising the column's structural integrity (Qu & Chang, 

2019). The spacing of stirrups can result in unconfined concrete areas, which can compromise 

the structural integrity of the column (Agustiar et al., 2017). But also, enhanced rates of 

transverse reinforcement not only significantly increase the lateral pressure within the concrete 

core, but improve the overall axial resistance of the column (Ali et al., 2021). The provision of 

sufficient transverse reinforcement is crucial for confining the compressed concrete, preventing 

buckling of the longitudinal bars, and averting shear failure if well employed (Shin et al., 2010). 

The use of Welded Reinforcement Grids (WRG) presents a promising alternative to 

traditional stirrup configurations in addressing the challenges of reinforced concrete columns. 

WRG not only enhances structural performance but also offers practical and economic 

advantages (Thomason, 2010). The impacts of the volumetric rate of transverse reinforcement, 

stirrup spacing, and concrete compressive strength on the behavior of short square concrete 

pillars improves the overall resistance of reinforced concrete structures (Kytinou et al., 2020). 

It is also an alternative for optimize reinforced concrete column design, particularly in high-

strength concrete applications (Smarslik & Mark, 2019). The provision of sufficient transverse 

reinforcement is crucial for confining the compressed concrete, preventing buckling of the 

longitudinal bars, and averting shear failure (Rajeev & Krishnamoorthy, 1998). 

Existing literature tends to focus on conventional reinforcement methods, with limited 

exploration into the potential of WSM stirrups. Furthermore, while the qualitative benefits of 

WSM stirrups in reinforcing concrete columns have been documented, quantitative models that 

integrate the complex interactions between material properties, stirrup design, and confinement 

effects are yet to be fully developed and validated against empirical data. 

This study aims to deepen the understanding of Welded Reinforcement Grids (WRG) 

in reinforced concrete columns, focusing on the development of an empirical equation that 

highlights the structural benefits of Welded Steel Mesh (WSM) stirrups while embracing 

sustainable construction practices. Leveraging a comprehensive dataset and detailed statistical 

analysis, the research evaluates the effects of transverse reinforcement rate, stirrup spacing, and 

concrete compressive strength on the performance of short square concrete pillars with 

dimensions of 150x150mm. The goal is to expand current knowledge and provide insights into 

optimizing column design, especially for high-strength concrete applications. This effort offers 

a practical and innovative approach for engineers and designers to effectively use WSM in 

reinforced concrete columns as stirrups, filling an important research gap in sustainable 

structural engineering. 
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7.1.1 Welded Steel Mesh Stirrups in Concrete Reinforcement 

The incorporation of welded steel mesh (WSM) stirrups in reinforced concrete columns 

has been shown to be a significant advancement in contemporary construction methodologies, 

offering implications for structural performance, but also improve the economic efficiency, and 

sustainability (Holz & Curbach, 2023). Research has indicated that the use of WSM as shear 

reinforcement in reinforced concrete beams can provide marginally higher strength and 

cracking resistance when combined with conventional stirrups (Seshu et al., 2020). 

Furthermore, the combination of stirrups and steel fibers has demonstrated a positive hybrid 

effect on the mechanical behavior of reinforced concrete beams (You et al., 2010). It has also 

been emphasized that the provision of sufficient transverse reinforcement is crucial for 

confining the compressed concrete, preventing buckling of the longitudinal bars, and averting 

shear failure (M. Zhao et al., 2023). 

The use of WSM stirrups in concrete columns enhances ductility and load-bearing 

strength, crucial for seismic-prone areas and high-stress structures (Dilger, 2000). These 

stirrups facilitate uniform stress distribution, mitigating crack formation and improving 

structural durability (J. Zhao et al., 2018). Additionally, the superior confinement provided by 

WSM stirrups enhances the column's resistance to buckling under high-pressure scenarios (Li 

et al., 2018). Studies have shown that increasing the yield strength of stirrups effectively 

improves the ductility, energy dissipation, and shear deformation of concrete joints (Wang, 

2019). Furthermore, the confinement offered by stirrups has been found to enhance the 

resistance of reinforced concrete columns to seismic forces (Zhang et al., 2019). 

The prefabricated nature of WSM stirrups allows for rapid customization and 

installation, leading to significant reductions in construction time and labor costs, particularly 

beneficial for large-scale or time-sensitive projects (Hong et al., 2018). The consistency in 

quality and dimensions of these factory-made stirrups ensures uniformity in reinforcement and 

structural integrity across construction projects. Prefabrication has been shown to offer various 

benefits, including safe construction, waste minimization, quality improvement, and 

productivity enhancement, making it an increasingly important construction mode, especially 

for buildings requiring a short construction time (Heidbach et al., 2019). 

The precise fabrication of WSM stirrups can lead to minimal material wastage, aligning 

with the sustainability goals of modern construction practices. Additionally, depending on the 

type of steel and coating used, these stirrups can offer enhanced corrosion resistance, an 

important consideration in harsh environmental conditions (Singh et al., 2022). 
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The use of high-strength stirrups has been found to be an effective measure to ensure 

good ductility of high-strength concrete columns under high axial compression ratios, 

enhancing their seismic performance (Yang et al., 2021). Additionally, the confinement 

provided by stirrups has been shown to enhance the resistance of reinforced concrete columns 

to seismic forces. 

 METHODOLOGY 

The research's primary objective was to systematically investigate the behavior of short 

reinforced concrete columns with transverse reinforcement in wrapped round bars made of 

Glass Fiber Reinforced Polymer (GFRP). This analysis was crucial in understanding the 

structural performance and durability of these novel reinforcement systems. 

Here, “Section 2 – Methodology”, is divided into two subsections for clarity and depth. 

Section 2.1 Experimental Program: Reinforcement and Load Capacity Assessment", presents 

the direct outcomes of our experimental research, detailing the procedures and observations 

from the tests conducted on concrete columns. Following this, “Section 2.2 Statistical Analysis 

and Empirical Equation Development", delves into the analytical interpretation of these 

experimental results, employing statistical methods to extract deeper insights and formulate 

empirical equations. This structured approach ensures a comprehensive understanding, starting 

from practical experimentation to analytical generalization. 

7.2.1 Experimental Program: Reinforcement and Load Capacity Assessment 

Thirty-six concrete columns (150x150x450mm) were constructed and divided into three 

groups: Reference Columns (RC), and those with Model I (CI) and Model II (CII) stirrups, 

differing in stirrup geometry and reinforcement ratios. RC comprised four columns without 

reinforcement for baseline comparison, two each at 36.2MPa and 51.1MPa compressive 

strengths. CI and CII, with 16 columns each, varied in longitudinal and transverse reinforcement 

specifics, illustrating different structural configurations. 
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7.2.2 Testing Procedures 

The columns underwent axial loading tests to evaluate their structural performance 

under stress. Each column was subjected to progressive axial loading using a specific testing 

machine until failure. Details of the rate of load application and control mechanisms were 

documented to ensure replicability and accuracy. The setup was equipped with instruments 

designed to measure longitudinal and transverse displacements, as well as deformations in the 

reinforcements. This setup included, but was not limited to, strain gauges and displacement 

transducers, providing precise and reliable data. 

7.2.3 Data Collection and Analysis 

The research team collected data on load versus displacement curves (both longitudinal 

and transverse), deformations at the midpoint of the longitudinal reinforcement, and 

deformations at the central stirrup of the transverse reinforcement. The failure pattern of each 

column was also recorded. 

The analysis involved an examination of the relationships between the observed 

behaviors and the various reinforcement configurations and concrete strengths. This process 

utilized advanced software or statistical methods to discern patterns, identify trends, and draw 

informed conclusions from the collected data. 

 

Figure 7.1 - Stirrup Models presenting: Model I and Model II. 
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7.2.4 Columns Materials 

The materials used in the construction of the concrete columns were selected to ensure 

quality, consistency, and relevance to the study's objectives. This section details the 

specifications of the aggregates, concrete mix, and steel reinforcement bars used in the 

experiments. 

The study employed natural quartz sand from the Paraíba do Sul River as the fine 

aggregate. This sand was characterized by a fineness modulus of 2.47 and a specific mass of 

2609.0 kg/m³. The choice of fine aggregate significantly impacts the workability and strength 

characteristics of the concrete. 

The concrete mix used in the study was designed to meet specific strength and durability 

criteria: 

 

Table 7.2 - Concrete Mix Design. 

 

 

Table 7.2 provides detailed information on the material consumption for each cubic 

meter of concrete. It includes data on the type of cement used, the theoretical resistance, water-

to-cement ratio (w/c), and quantities of water, cement, sand, and crushed stone in kg/m³. 

Additionally, it records the percentage of superplasticizer added and the average compressive 

strength (fcm) in MPa. 

Understanding the properties of the steel bars used for reinforcement is vital for 

analyzing the structural behavior of the columns. Table 7.2 presents details about the steel bars 

used in the experiments. It includes information on the diameter, yield strength (fyk), yield 

stress (fy), ultimate tensile strength (fu), strain at yield stress (εsy), strain at yield stress in 

percentage (εsy*), and ultimate strain (εu). 

 

Table 7.2 - Characteristics of the steel bars used. 
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Table 7.2 - Characteristics of the steel bars used. 

 

Where: 

Steel properties include characteristic yield stress (fyk), yield stress (fy), ultimate stress 

(fu), yield strain (εsy*) and specific yield strain (εsy), and strain at failure (εu). 

7.2.5 Reinforcement Configuration and Instrumentation 

To understand experimental results, reinforcement configuration and measurement 

methods are crucial. Reinforcement details are depicted in Figures 7.2 and 7.3, showing 

longitudinal and transverse layouts. A nomenclature system (PX-Y-Ø-W) clarifies column 

types and features. Accurate measurements using LVDTs and strain gauges on reinforcements 

are vital for recording displacements, strains, and evaluating column performance under load. 

 

 

Figure 7.2 - Columns measure details. 
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Figure 7.3 - Positioning of strain gauges on reinforcement bars. 
 

The design of the stub columns, as presented in Figure 7.2, was meticulously planned 

to ensure they accurately represent the conditions and challenges encountered in real-world 

reinforced concrete (RC) column applications. The dimensions and configurations of these 

columns were chosen based on a comprehensive review of relevant literature and industry 

standards, aiming to capture the essential aspects of structural behavior and confinement effects 

in RC columns. Each specimen's size and reinforcement layout were specifically tailored to 

explore the impact of welded steel mesh (WSM) stirrups on the columns' load-bearing capacity 

and ductility. The dimensions were selected to facilitate a controlled and observable study of 

the confinement effects while ensuring the specimens' manageability and the practical 

feasibility of the testing procedures. The design process involved extensive consultations with 

structural engineering experts and was guided by established principles in civil engineering 

research to simulate typical loading conditions and failure modes in RC columns. This approach 

ensured that the experimental setup provided a reliable and relevant basis for assessing the 

performance of WSM stirrups in enhancing the structural integrity of concrete columns. 

Table 7.3 compiles other pertinent characteristics of the columns. It includes data on 

reinforcement ratios, concrete mix properties, and other relevant information. 
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Table 7.3 - Geometric properties of columns. 

 

 

This table provides the diameter of the steel bars in millimeters, along with their 

respective mechanical properties, such as yield strength, yield stress, ultimate tensile strength, 

and strains at various stress levels, all crucial for assessing the reinforcement's performance 

under load. 

7.2.6 Manufacturing of the Columns 

The manufacturing process of columns, crucial for their structural integrity and testing 

suitability, involves several key steps. Initially, the reinforcement for each column is prepared 

and instrumented, a critical phase for determining the columns' structural response under load. 

The reinforcements are placed horizontally in plywood formworks designed to preserve the 

columns' shape and integrity during concrete pouring and setting. Two concrete mixes aiming 

for compressive strengths of 36.2 MPa and 51.1 MPa are prepared in a 200-liter mixer, with 

careful control over mixing time for consistency. Following mixing, the concrete is manually 

placed into formworks and compacted on a vibrating table to eliminate air pockets and ensure 

uniform distribution. The columns are demolded after 24 hours and cured in lime-saturated 

water for 28 days to optimize hydration, thereby improving strength and durability. After 

Concrete 
Strength

r (%) f(mm) f(mm) rw(‰) s(mm) (MPa)

PI-30-4.2-30 0.362 30

PI-30-4.2-70 0.207 70

PI-30-4.2-100 0.145 100

PI-30-4.2-120 0.121 120

PI-30-5.0-30 0.689 30

PI-30-5.0-70 0.295 70

PI-30-5.0-100 0.207 100

PI-30-5.0-120 0.172 120

PII-30-4.2-30 0.723 30

PII-30-4.2-70 0.31 70

PII-30-4.2-100 0.217 100

PII-30-4.2-120 0.181 120

PII-30-5.0-30 1.033 30

PII-30-5.0-70 0.443 70

PII-30-5.0-100 0.31 100

PII-30-5.0-120 0.258 120

36.210

1.4

2.8

4.2

5

4.2

5

Column

Longitudinal 
reinforcement

Transverse reinforcement
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curing, the columns are stored under controlled laboratory conditions until testing, to maintain 

stable properties. 

7.2.7 Execution of Tests 

The following section details the procedures and methodologies employed in evaluating 

the compressive behavior of the columns. 

Axial Compression Tests: Centered axial compression tests were conducted using a DL 

300 Universal Testing Machine (capacity of 2000 kN) by EMIC. The load was applied at a 

constant speed of 0.006 m/s, ensuring uniform stress distribution. 

Load Application and Monitoring: The load was continuously monitored and applied 

until a significant decrease, indicative of strength loss and structural failure, was observed. This 

point provided insights into the columns' load-bearing capacity. 

The use of a metal collar for the confinement of column ends and support for the 

installation of LVDTs is crucial for maintaining column alignment and stability during testing 

(Abdulhussein & Al-Sherrawi, 2021). A metal collar was employed to serve dual purposes: 

confinement of the column ends and support for the installation of LVDTs. This collar was 

integral in maintaining column alignment and stability during testing. 

The assessment of compressive behavior in reinforced concrete columns can be 

thoroughly evaluated through experimental testing, providing essential data for analyzing their 

structural integrity and performance characteristics (Lei et al., 2020). Experimental 

investigations on the behavior of reinforced concrete columns under axial compression loads 

have been conducted to study their compressive behavior and structural performance (Lei et al., 

2020). Additionally, the influence of concrete compressive strength on the overall behavior of 

reinforced concrete columns subjected to eccentric loads has been studied, emphasizing the 

significance of concrete properties in column behavior (Fareed et al., 2022). 

This testing approach allowed for a thorough evaluation of the columns' behavior under 

compression, providing data for analyzing their structural integrity and performance 

characteristics. 
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7.2.8 Experimental Program: Results and Behavioral Analysis 

The behavior of reinforced concrete columns under axial compression loads has been 

extensively studied, emphasizing the significance of confinement in enhancing the structural 

performance of the columns (Mahgub et al., 2017). The consistent pattern of behavior observed 

across the majority of the columns during testing, including the displacement of the concrete 

cover and the achievement of ultimate loads higher than the maximum loads, underscores the 

importance of stirrups in providing effective confinement and creating a robust confined core 

within the columns (Mahgub et al., 2017). Furthermore, research has investigated the influence 

of non-uniform corrosion on the cracking pattern of concrete and the stress distribution in 

concrete due to non-uniform radial pressure, providing insights into the behavior of reinforced 

concrete elements under various loading conditions (Abdelatif et al., 2020). 

To provide a visual representation of these failure modes, Figure 7.4 has been included 

in the study. This figure illustrates the specific ways in which the columns failed under the 

applied loads, offering insights into the structural limits and the efficacy of the strategies used. 

 

 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 7.4 - Failure pattern of the tested pillars for (a), (b), (c), (d) for 38 MPa and (e), (f), (g), 

(h), for 62 MPa specimens. 
 

In Figure 7.4, the failure modes of the tested columns are categorized based on the 

concrete strengths employed in the study. Images (a) through (d) illustrate the failure patterns 

for columns with concrete strength of 38 MPa, while images (e) through (h) correspond to 

columns with a higher strength of 62 MPa. For the columns with 38 MPa concrete strength, 

images (a) to (d) show typical failure modes such as crushing at the column ends, longitudinal 
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cracking, and buckling of internal reinforcement. These phenomena are indicative of the stress 

distribution and the confinement effectiveness of WSM stirrups at this strength level. In 

contrast, for the 62 MPa strength columns, depicted in images (e) to (h), the failure patterns 

demonstrate more pronounced confinement effects, with failures characterized by more 

distributed cracking and less pronounced buckling of the reinforcement, reflecting the higher 

confinement provided by WSM stirrups at increased concrete strengths. 

This elaboration ensures that the readers can clearly discern how the confinement effect 

of WSM stirrups influences the failure patterns at different concrete strengths, providing a 

deeper understanding of the structural behavior under varied loading conditions.  

Figure 7.5 in the study illustrates the impact of transverse reinforcement ratio on the 

strength and ductility of tested columns, categorized into subgroups. The results show that an 

increase in the transverse reinforcement ratio significantly enhances the columns' strength, 

aligning with previous research that suggests closer stirrup spacing improves confinement, thus 

boosting ductility and strength. Initially, all columns responded linearly until the first strength 

peak, with columns having a 70 mm stirrup spacing showing superior capacities. Interestingly, 

columns with a 30 mm spacing did not reach the highest strength, indicating an optimal 

transverse reinforcement range exists, beyond which reinforcement might not effectively 

improve confinement. The study also found that columns with a strength of 51.1 MPa generally 

had higher capacities than those with 36.2 MPa, with Model I and II columns showing 

significant ultimate capacity increases of over 34% and 53%, respectively. This underscores 

the importance of confinement in concrete structures and suggests an optimal reinforcement 

range for maximizing column strength and ductility. 

 

 

(a) 

 

(b) 
 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 
 

(h) 

Figure 7.5 – Load vs Strain plots for all specimens, where (a) refers to the column-1, 30MPa and 
reinforcement 4.2mm. (b) refers to the column-1, 60MPa and reinforcement 4.2mm. (c) refers to 

the column-1, 30MPa and reinforcement 5.0mm. (d) refers to the column-1, 30MPa and 
reinforcement 5.0mm. (e) refers to the column-2, 30MPa and reinforcement 4.2mm. (f) refers to 

the column-2, 60MPa and reinforcement 4.2mm. (g) refers to the column-2, 30MPa and 
reinforcement 5.0mm. (h) refers to the column-2, 60MPa and reinforcement 5.0mm. 
 

Figure 7.5 illustrates the distinct behavioral patterns under axial loading for each 

subgroup of reinforced concrete columns. Subgroup A, represented by the first curve, shows a 

rapid decline in load-bearing capacity post-peak, indicative of brittle failure. Subgroup B, 

depicted in the second curve, demonstrates a more gradual decline and increased ductility, 

suggesting better energy dissipation before failure. Subgroup C, corresponding to the third 

curve, exhibits the highest peak load and sustained ductility, indicating superior confinement 

effects provided by the WSM stirrups. Each curve's shape and peak point provide insights into 

the varying degrees of strength and ductility enhancement achieved through different 

configurations and spacings of WSM stirrups in the tested column specimens. 

7.2.9 Influence of the Model or Configuration of Stirrups. 

In our study, Figure 7.6 illustrate the relationship between load and the volumetric ratio 

of transverse reinforcement (ρw) for the two stirrup models, I and II, considering the concrete 

strengths under investigation. A notable observation from this comparison is the superior 

efficacy of Model II over Model I in terms of confining the concrete core. This increased 

effectiveness can be attributed to the larger area of confined concrete provided by the distinct 

geometry of Model II. 
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a) b) 

Figure 7.6 – Load vs ρw values for different strengths: a) fcm = 36.2 MPa and b) fcm = 51.1 
MPa. 

 

This specific finding aligns with the research conducted by (Tavio & Kusuma, 2015), 

who explored similar configurations and reported comparable outcomes. A key feature of 

Model II is the presence of four cells within its design, which appears to enhance confinement 

markedly. This enhanced confinement translates into a noticeable improvement in both the 

strength and ductility of the columns. The geometry of Model II, therefore, plays an important 

role in determining the overall structural performance, underscoring the importance of stirrup 

design in reinforced concrete applications. 

 MACHINE LEARNING ANALYSIS AND EMPIRICAL EQUATION 

DEVELOPMENT 

This section presents an analysis of the experimental outcomes, juxtaposed with 

theoretical predictions, focusing particularly on the ultimate load capacity of the tested columns. 

The study employs a regression algorithm with polynomial features to accurately predict 

the enhanced strength due to the confinement of Welded Steel Mesh (WSM) stirrups. The 

model's evaluation centered on quantitative metrics such as RMSE and R², which facilitated a 

nuanced assessment of its predictive accuracy and explanatory power. Validation procedures, 

including statistical tests for normality and homoscedasticity of residuals, were employed to 

verify the model’s assumptions and reliability. Furthermore, the model's coefficients were 

interpreted within the context of civil engineering, offering insights into the impact of WSM 

stirrups on the structural performance of RC columns. This comprehensive analysis not only 

underscored the empirical relevance of our machine learning approach but also aligned with the 
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stringent criteria of scholarly rigor, reinforcing the study's contribution to the domain of 

structural engineering.  

Table 7.4 provides a comparison between the theoretical and experimental results 

concerning the ultimate load capacity of the columns, specifically focusing on the intact 

concrete section. For that, the theoretical ultimate loads, designated as Pteo,cp and Pteo,pr, were 

calculated using the following equation: 

 

𝑃𝑡𝑒𝑜, 𝑐𝑝 𝑜𝑟 𝑃𝑡𝑒𝑜, 𝑝𝑟 = 0.85 × (𝑓𝑐𝑚 𝑜𝑟 𝑓𝑐, 𝑝𝑟) × (𝐴𝑐 − 𝐴𝑠) + 𝑓𝑦 × 𝐴𝑠     (1) 

 

Here, Ac represents the cross-sectional area of the columns, As denotes the area of the 

longitudinal reinforcement, and fy is the experimentally obtained yield stress as outlined in 

Table 7.2. 

Strength Discrepancy: A notable observation from the analysis is that the experimental 

strengths consistently surpassed the theoretical values. This discrepancy suggests that 

additional factors, beyond the resisting capacities of the longitudinal reinforcement and the 

concrete’s cross-sectional area, significantly influence the column's strength. 

Influence of Confined Concrete Core: This behavior is attributed to the presence of a 

confined concrete core, created by the transverse reinforcement under stress, resulting from the 

transverse deformation of the concrete.  

Post-Peak Behavior Analysis: According to (ACI-441.R1, 2018), the concrete cover is 

lost once the column reaches the peak of its stress-strain curve, indicating that post-peak 

behavior is predominantly governed by confinement. Notably, high-strength concrete exhibits 

distinct behavior from regular-strength concrete, particularly after reaching peak stress. 

7.3.1 Theoretical Ultimate Capacity Considering Concrete Core 

The theoretical ultimate capacity was also calculated considering the concrete core 

defined either by the stirrup's perimeter or the area of concrete between the stirrups (Acn). 

Table 7.4 illustrates the comparison and relationship between this revised theoretical 

capacity and the experimentally obtained ultimate capacity. 
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7.3.2 Explanation of Key Variables and Parameters 

This subsection clarifies the fundamental variables and parameters employed in our 

analysis, which are essential for understanding the results and their implications. 

The terms 'fcm' and 'fc,pr': 'fcm' refers to the mean compressive strength of the concrete 

used in constructing the columns. Conversely, 'fc,pr' indicates the compressive strength 

measured in the reference column, which serves as a benchmark for comparison. These values 

are critical in assessing the structural integrity and capacity of the columns. 

The terms 'Pteo,cp' and 'Pteo,pr': The theoretical ultimate loads for the columns with 

different reinforcement patterns (CPs) and the reference column are denoted by 'Pteo,cp' and 

'Pteo,pr', respectively. These theoretical calculations provide an essential basis for evaluating 

the expected performance of the columns under axial loads. 

The term 'Pexp' represents the experimental ultimate load, which is the actual load 

capacity observed during the testing. This empirical measurement is crucial for understanding 

the real-world performance of the columns and for validating the theoretical predictions. 

In this context, 'Average' refers to the average ratio of the experimental ultimate load to 

the theoretical ultimate load for the CPs (Pexp/Pteo,cp). This average ratio is key in 

summarizing the relationship between experimental outcomes and theoretical expectations. It 

highlights the effectiveness of the design and the influence of different reinforcement 

approaches on the columns' performance. 

The theoretical ultimate load was also calculated using a modified approach: 

 

𝑃𝑡𝑒𝑜, 𝑐𝑝 𝑜𝑟 𝑃𝑡𝑒𝑜, 𝑝𝑟 = (𝑓𝑐𝑚 𝑜𝑟 𝑓𝑐, 𝑝𝑟) × 𝐴𝑐𝑛 + 𝑓𝑦 × 𝐴𝑠       (2) 

 

Here, Acn represents the area of the concrete core defined by the stirrup's perimeter or 

the area of concrete between the stirrups, and As denotes the area of the longitudinal 

reinforcement. This equation provides a more refined theoretical estimate by considering the 

specific area of the confined concrete core. 
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Table 7.4 - Theoretical and experimental ultimate capacities of the columns considering the 
concrete data. 

 

"Column" specifies each tested type and configuration. "fcm (MPa)" and "fc,pr(MPa)" 

indicate actual and predicted compressive strengths. "Pteo,cp" and "Pteo,pr" represent 

theoretical ultimate loads for intact and predicted sections. "Pexp" is the observed experimental 

load. Ratios "Pexp/Pteo,cp" and "Pexp/Pteo,pr" compare experimental and theoretical loads. 

"Average" is the mean across configurations. 

The research presented in our study elucidates insights into the ultimate load capacity 

of reinforced concrete columns, particularly those reinforced with Welded Steel Mesh (WSM) 

stirrups. Our findings demonstrate a close alignment with the (Pexp/Pteo) ratios observed in 

Lima's 1997 study. When considering the intact concrete section, these ratios hover around 1, 

indicating a harmony between experimental and theoretical values. Yet, a deviation emerges 

when focusing on the concrete core, where the (Pexp/Pteo) ratio surpasses 1, suggesting that 

the concrete core exhibits greater resistance than theoretical models predict. 

This phenomenon echoes the research of Agostini (1992), Cusson and Paultre (1993), 

and Paiva (1994), all highlighting the concrete core's importance in determining column 

Columns fcm (MPa) fc,pr.(MPa) Pteo,cp(kN) P teo,pr(kN) Pexp. (kN) Pexp./ P teo,cp Pexp./Pteo,pr Average

PI-30-4,2-30 451,89 423,37 830 1,84 1,96

PI-30-4,2-70 466,68 436,57 919 1,97 2,11

PI-30-4,2-100 451,43 422,96 813 1,80 1,92
PI-30-4,2-120 469,68 439,25 916 1,95 2,09

PI-30-5,0-30 455,83 426,88 846 1,86 1,98

PI-30-5,0-70 421,83 396,52 916 2,17 2,31

PI-30-5,0-100 437,75 410,74 858 1,96 2,09

PI-30-5,0-120 467,69 437,47 826 1,77 1,89

PII-30-4,2-30 642,37 613,30 824 1,28 1,34

PII-30-4,2-70 642,37 613,30 994 1,55 1,62

PII-30-4,2-100 618,94 592,37 879 1,42 1,48

PII-30-4,2-120 616,09 589,83 902 1,47 1,53

PII-30-5,0-30 619,91 593,24 926 1,49 1,56

PII-30-5,0-70 622,86 595,87 1134 1,82 1,90

PII-30-5,0-100 634,63 606,38 1018 1,61 1,68

PII-30-5,0-120 658,76 627,93 955,11 1,45 1,52

PI-60-4,2-30 586,59 478,13 1330 2,27 2,78

PI-60-4,2-70 595,25 484,45 1330 2,24 2,75

PI-60-4,2-100 603,91 490,77 1351 2,24 2,75

PI-60-4,2-120 612,62 497,12 1196 1,95 2,41

PI-60-5,0-30 554,96 455,05 959 1,73 2,11

PI-60-5,0-70 614,37 498,40 1161 1,89 2,33

PI-60-5,0-100 562,25 460,37 916 1,63 1,99

PI-60-5,0-120 597,01 485,73 1028 1,72 2,12

PII-60-4,2-30 753,98 650,37 1506 2,00 2,32

PII-60-4,2-70 749,35 646,99 1574 2,10 2,43

PII-60-4,2-100 740,60 640,61 1307 1,77 2,04

PII-60-4,2-120 762,73 656,76 1350 1,77 2,06

PII-60-5,0-30 751,55 648,60 1373 1,83 2,12

PII-60-5,0-70 735,06 636,57 1477 2,01 2,32

PII-60-5,0-100 735,06 636,57 1525 2,08 2,40

PII-60-5,0-120 773,03 664,27 1513 1,96 2,28

36,2 32,3

1,91

1,51

51,1 37,3

1,96

1,91
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strength and resistance. Our study contributes to this established knowledge, reaffirming the 

concrete core's significance in the structural integrity of reinforced concrete columns. 

Our research culminates in the formulation of a comprehensive equation integrating 

concrete and steel reinforcement contributions, alongside the advantageous effects of WSM 

stirrup confinement. The equation is: 

 

𝑃𝑢𝑙𝑡 = 0.85 × 𝑓𝑐𝑚 × (𝐴𝑐 − 𝐴𝑠) + 𝑓𝑦 × 𝐴𝑠 + 𝐶𝑤𝑠𝑚     (3) 

 

The base equation representing the ultimate load capacity of reinforced concrete 

columns is given by Equation 2. This equation considers the compressive strength of concrete, 

the cross-sectional area of concrete and steel reinforcement, and the yield strength of the steel 

(Dilger, 2000). Additionally, research has shown that factors such as axial compression ratio 

and shear-span ratio significantly affect the load capacity and deformation capacity of 

reinforced concrete columns (Jin et al., 2017). Furthermore, the addition of steel fibers has been 

found to affect the load-deflection behavior, ultimate strength capacity, ductility, and 

confinement of eccentrically loaded high-strength reinforced concrete columns (Alkufi & Al-

Sherrawi, 2018). 

The equation includes concrete's load capacity 0.85 × 𝑓𝑐𝑚 × (𝐴𝑐 − 𝐴𝑠) steel's tensile 

strength 𝑓𝑦 × 𝐴𝑠, and a confinement term 𝐶 for WSM stirrups' strength and ductility 

enhancement. 

This equation bridges theoretical analysis with practical civil engineering adjustments, 

especially where WSM stirrups are utilized. It offers a nuanced perspective on reinforced 

concrete columns under load, enhancing the precision of structural design and analysis. 

Research has shown that factors such as axial compression ratio significantly affect the load 

capacity and deformation capacity of reinforced concrete columns (Hasan et al., 2019). 

Furthermore, our study addresses slenderness in column design, a crucial aspect 

affecting stability under compressive forces. While our experimental setup did not focus on 

extremely slender columns, it provided data on the interplay between column dimensions, 

material properties, and buckling risk. The presence of WSM stirrups potentially alters buckling 

behavior, a key consideration in reinforced concrete column design. By comparing theoretical 

predictions with empirical data, our study enhances understanding of WSM stirrups' role in 

column resistance and confinement. This knowledge significantly informs design practices, 

balancing strength, and stability for safer, more efficient, and reliable concrete structures. 
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Our study culminates in the derivation of a novel empirical equation designed to predict 

the ultimate load capacity of reinforced concrete columns, particularly those employing Welded 

Steel Mesh (WSM) stirrups for reinforcement. This equation, formulated from our 

comprehensive regression analysis, is a significant advancement in understanding the intricate 

dynamics of reinforced concrete behavior. 

7.3.3 Statistical Analysis Implementation 

A Polynomial Regression is utilized, which extends linear regression by considering 

polynomial features of the input variables. This approach is selected due to its capacity to 

capture the nonlinear impact of WSM stirrup confinement on the column's load-bearing 

capability.  

The statistical analysis conducted in this study was comprehensive and methodical, 

aiming to derive an empirical equation for predicting the ultimate load capacity of reinforced 

concrete columns reinforced with Welded Steel Mesh (WSM) stirrups. The following steps 

presented by the pseudo-algorithm outline algorithm implementation. 

 

Data Collection and Preparation: We compiled a dataset from experiments focusing on 

variables such as concrete strength, stirrup volume ratio, theoretical resistance, and other 
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relevant parameters. This dataset was formatted into a CSV file, ensuring accuracy and 

consistency across all data points. 

An initial Exploratory Data Analysis (EDA) involves examining data distributions, 

identifying potential outliers, and understanding underlying patterns and correlations between 

variables (Organisciak et al., 2021). For this work, the EDA of the dataset was performed using 

various statistical tools. This phase involved examining data distributions, identifying potential 

outliers, and understanding underlying patterns and correlations between variables. 

Based on EDA, independent variables believed to significantly impact the dependent 

variable (ultimate load capacity) were selected. These included the compressive strength of 

concrete, theoretical predictions, stirrup volume ratio, and spacing, among others. 

We employed regression analysis, specifically linear regression, as our primary 

statistical method. This choice was due to its effectiveness in understanding relationships 

between multiple independent variables and a dependent variable. 

Data is split in an 80/20 ratio for training and testing to ensure ample data for both 

constructing and validating the model. A 5-fold cross-validation method is employed to verify 

the model's generalizability and to refine the hyperparameters.  

Features including concrete strength, stirrup spacing, and the volume ratio of WSM 

stirrups are selected based on their correlation with ultimate load capacity. Feature importance 

analysis indicates that the stirrup volume ratio and concrete strength are paramount in 

influencing the model’s predictions, underscoring their significance in the confinement effect.  

Incorporation of Polynomial and Interaction Terms: To capture the non-linear 

relationships and the interaction effects among variables, polynomial and interaction terms 

were generated and included in the regression model. This approach allowed for a more 

nuanced representation of the complex behaviors of materials and structural elements under 

stress. 

Based on the initial model outputs and performance metrics, the model should be 

undergone through several iterations of refinement, involving adjustments, variable additions 

or removals, and testing different combinations of polynomial and interaction terms to achieve 

the best fit (Rácz et al., 2019). For this study, the regression model was trained on a subset of 

the data (training set), and its performance was evaluated using another subset (testing set). 

Performance metrics such as Root Mean Squared Error (RMSE) and R-squared (R²) score were 

used to assess the model's accuracy and predictive power. 

The polynomial degree is determined to be 2, based on a preliminary analysis that 

identifies this level as offering an optimal trade-off between model complexity and predictive 
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accuracy. To prevent overfitting, Ridge regularization is applied with a coefficient (λ) of 0.1, 

following the model's performance evaluation on the validation set.  

Model Refinement: Based on the initial model outputs and performance metrics, the 

model underwent several iterations of refinement. This process involved adjusting the model, 

adding or removing variables, and testing different combinations of polynomial and interaction 

terms to achieve the best fit. 

Final Equation Formulation: The final step was to consolidate the findings from the 

regression analysis into a coherent empirical equation. This equation incorporated the identified 

significant predictors, their coefficients, and the model intercept, providing a tool for predicting 

the ultimate load capacity of WSM-reinforced concrete columns. 

Validation and Interpretation: The final equation was then interpreted within the context 

of civil engineering principles. Further validation was conducted by applying the equation to 

external datasets and comparing the predicted results with actual outcomes, ensuring the 

model's practical applicability and reliability. 

This statistical analysis has been pivotal in achieving an empirical understanding of the 

behavior of reinforced concrete columns. It bridges the gap between theoretical knowledge and 

practical application, offering a tool for engineers in the field. 

The empirical equation, derived to encapsulate the complex relationships influencing 

ultimate load capacity, is as follows: 

 

𝑃𝑢𝑙𝑡 = 0.85 × 𝑓𝑐𝑚 × (𝐴𝑐 − 𝐴𝑠) + 𝑓𝑦 × 𝐴𝑠 + 𝐶𝑤𝑠𝑚     (4) 

𝐶𝑤𝑠𝑚 = 𝐶0 + 𝐶1 × 𝑙𝑜𝑔(𝑓𝑐𝑚) + 𝐶2 × 𝑟𝑤 + 𝐶3 × (𝑓𝑐𝑚 × 𝑃𝑡𝑒𝑜. 𝑝𝑟) + 𝐶4 × 𝐴𝑠     (5) 

 

In the development of Equation (5), the terms were the result of initial analyses that 

aimed to identify the key factors influencing the enhanced strength of reinforced concrete (RC) 

columns with welded steel mesh (WSM) stirrups. These analyses comprised a combination of 

theoretical study, empirical data examination, and preliminary statistical modeling. Through a 

detailed review of existing literature and theoretical models on RC column behavior, the 

presented variables were hypothesized to have significant impacts on the columns' strength. 

Subsequent empirical data analysis, which included correlation studies and sensitivity analysis 

on the dataset of 36 short column tests, helped in validating these hypotheses and refining the 

selection of variables. Preliminary regression models were then constructed to quantitatively 

assess the influence of each variable. The terms included in Equation (5) were those that 
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consistently showed a strong correlation with the columns’ load-bearing capacity and had a 

statistically significant impact in the regression models.  

The methodology adopted in this study transcends traditional regression analysis, 

incorporating machine learning techniques to advance the predictive modeling of the strength 

of reinforced concrete (RC) columns. This innovative approach is characterized by the 

integration of feature engineering, polynomial transformations, and rigorous model validation 

processes, all hallmarks of machine learning. Specifically, in developing Equations (4) and (5), 

we applied machine learning strategies such as optimizing polynomial degrees based on model 

performance metrics and employing cross-validation to mitigate overfitting risks. This fusion 

of regression analysis with machine learning principles has enabled a more complex and 

detailed exploration of the structural behavior of RC columns reinforced with welded steel mesh 

(WSM) stirrups. The novelty of our research stems from this systematic application of machine 

learning techniques to construct a comprehensive model that precisely predicts the confinement 

effects of WSM stirrups, representing a notable advance in structural engineering analysis.  

From the statistical analysis, the following analysis were presented: 

Transformed scores: 𝑅2 = 0.79, 𝑅𝑀𝑆𝐸 = 0.11. Intercept 𝐶0 = 0.71, 𝐶1 = 3.88, 𝐶2 = 30.52, 

𝐶3 = 1.41. 

Substituting the coefficients obtained from our regression model, the equation translates 

to: 

 

𝐶𝑤𝑠𝑚 = 0.71 + 3.88 × 𝑙𝑜𝑔(𝑓𝑐𝑚) + 30.52 × 𝑟𝑤 + 1.41 × 𝐴𝑠     (6) 

 

Here, Pexp denotes the experimental ultimate load capacity, fcm represents the 

concrete's compressive strength, Pteo.pr signifies the theoretical ultimate load capacity 

predicted for the concrete section, rw indicates the volume ratio of stirrups, and the Longitudinal 

Reinforcement (As) term captures the influence of the column's steel reinforcement. 

The equation reflects the collective impact of the concrete's compressive strength (both 

linearly and logarithmically), theoretical ultimate load capacity, stirrup volume ratio, and an 

interaction between concrete strength and theoretical capacity, along with the effect of 

longitudinal reinforcement. The incorporation of both linear and logarithmic terms for the 

compressive strength captures the non-linear behavior of concrete under stress, offering a 

nuanced representation of structural dynamics. 
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This equation, integral to our research, provides a practical method for estimating the 

load-bearing capacity of concrete columns reinforced with WSM stirrups. It offers a bridge 

between statistical rigor and engineering principles, enhancing the precision of structural design 

and analysis in the field of civil engineering. 

 RESULTS AND DISCUSSION 

Our study makes significant strides in understanding reinforced concrete columns, 

particularly highlighting the benefits of using Welded Steel Mesh (WSM) stirrups. We found 

that WSM stirrups notably enhance both the load-bearing capacity and ductility of these 

columns, supporting our theoretical predictions about their effectiveness. 

Shifting from conventional stirrups, our research underscores the economic and 

structural advantages of WSM stirrups, relevant in the context of sustainable construction 

practices. Despite these advancements, we acknowledge challenges in accurately predicting 

load capacity for slender columns, indicating an area for future research. 

A major achievement of our study is the creation of an empirical equation that predicts 

the ultimate load capacity of columns reinforced with WSM stirrups. This equation considers 

key factors like concrete strength and stirrup volume ratio. 

Our findings offer new insights into the role of WSM stirrups in reinforcing concrete 

columns and suggest a reevaluation of the contribution of concrete core strength. This research 

provides practical guidance for the use of WSM stirrups, paving the way for future explorations 

in this field. 

7.4.1 Comparative Validation of Empirical Equation Case Study 

To validate the empirical equation developed in this study, we compared its predicted 

ultimate load capacities with those obtained by (Guerrante, 2006), (Collins et al., 1993), (Lima 

et al., 2003), and (Queiroga & Giongo, 2003). Selected columns from these studies, chosen for 

their similarity in stirrup design, concrete strength, and reinforcement details, allowed for a 

rigorous benchmarking of our model against established methodologies. 

Table 7.5: Comparative Analysis of Ultimate Load Capacities (kN) for Reinforced 

Concrete Columns Across Different Studies. 
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Table 7.5 - Comparative Analysis of Ultimate Load Capacities (kN) for Reinforced Concrete 
Columns Across Different Studies. 

 
 

The findings illustrate a high degree of concordance between our equation's predictions 

and the results from (Guerrante, 2006), with all compared cases showing a ratio of 1.00, 

highlighting the precision of our model in capturing the confinement effects in high-strength 

concrete columns. In comparison to (Collins et al., 1993), our model tends to be slightly more 

conservative, with ratios ranging from 0.888 to 0.947. This suggests that while our equation is 

in reasonable agreement, it may incorporate a more cautious approach to confinement 

modeling, which could be further explored for refinement. 

 

 

Figure 7.7 – Comparative Analysis of Ultimate Load Capacities for Reinforced Concrete 
Columns Across Different Studies. 
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The model exhibits a robust correlation with the empirical data, affirming the 

quantitative predictability of the confinement effect provided by WSM stirrups. The 

consistency between the model’s predictions and the theoretical understanding of confinement 

in reinforced concrete columns substantiates the WSM stirrups' role in enhancing column 

strength. 

The comparison underlines the robustness of our empirical equation across varied 

structural scenarios and reinforces its reliability as a tool for structural engineering design, 

particularly when employing WSM stirrups. The close alignment with established research 

accentuates the potential of our model to contribute meaningfully to the design and analysis of 

reinforced concrete structures. 

 CONCLUSION 

Our investigation has revealed the structural advantages of utilizing welded steel mesh 

(WSM) stirrups in reinforced concrete (RC) columns, showcasing their ability to augment 

strength and ductility. Drawing from the experimental data and the derived analytical models, 

we propose specific structural solutions for practical implementation. The column models 

presented in Figures 7.1 and 7.2 demonstrate the ideal configurations and dimensions of WSM 

stirrups that markedly enhance the load-bearing capabilities and seismic resilience of RC 

columns. These configurations are recommended for engineers and designers in the 

conceptualization and execution of new construction projects or the retrofitting of existing 

structures, with the goal of achieving superior performance and safety standards.  

This study presents an advancement in the structural analysis of concrete columns 

reinforced with Welded Steel Mesh (WSM) stirrups. It was demonstrated that WSM stirrups 

substantially enhance both the load-bearing capacity and ductility of concrete columns, 

supporting the hypothesis that they can play a crucial role in modern construction practices. 

This improvement in structural performance not only contributes to engineering efficiency but 

also aligns with sustainable construction goals by potentially reducing material usage and 

minimizing environmental impact. 

This research contributes to this area by offering a novel empirical equation that 

effectively bridges theoretical concepts with practical applications. This equation, grounded in 

rigorous statistical analysis, incorporates both linear and non-linear relationships to estimate 

the load-bearing capacity of WSM-reinforced concrete columns reliably. 
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One limitation of this study is that the empirical equation requires validation across 

broader variables and long-term performance metrics to account for the full spectrum of 

influences on reinforced concrete column behavior. Future research should include a diverse 

range of environmental conditions, load dynamics, and column geometries to enhance 

predictive accuracy. Additionally, investigations into the sustainability and life cycle impacts 

of WSM stirrups will aid in their integration into sustainable construction practices. 

 DISCUSSION FOR CHAPTER 7 

7.6.1 Key Findings 

The experimental investigation revealed that reinforced concrete columns with welded 

steel mesh stirrups exhibit superior performance compared to those with traditional 

reinforcement methods. The welded steel mesh not only enhances the columns’ ability to 

withstand higher loads but also improves their ductility, allowing for better energy absorption 

and distribution under stress. This improvement is particularly significant in seismic zones, 

where structures are required to endure dynamic loading without catastrophic failure. The 

findings suggest that welded steel mesh could be a key component in the next generation of 

reinforced concrete structures, offering a balance between strength, ductility, and cost-

effectiveness. 

7.6.2 Implications 

The implications of these findings are substantial for structural engineering, particularly 

in the design and construction of buildings and infrastructure in regions prone to seismic 

activity. The enhanced performance of reinforced concrete columns with welded steel mesh 

stirrups could lead to revisions in design codes, promoting their use as a standard practice. 

Additionally, the economic benefits of using welded steel mesh, which allows for material 

savings without compromising safety, align with industry goals for cost reduction and 

sustainability. These advantages make welded steel mesh an attractive option for both new 

construction projects and the retrofitting of existing structures to meet higher safety standards. 
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7.6.3 Limitations 

While the study provides strong evidence for the benefits of welded steel mesh stirrups, 

it is important to acknowledge certain limitations. The experimental setup was based on specific 

column configurations and loading conditions, which may not cover the full range of scenarios 

encountered in real-world construction. Additionally, the long-term durability of welded steel 

mesh in various environmental conditions, such as high humidity or corrosive atmospheres, 

was not addressed in this study. Further research is needed to evaluate the performance of 

welded steel mesh under different conditions and to explore its application in a broader range 

of structural elements. 

7.6.4 Future Work 

Future research should focus on extending the application of welded steel mesh stirrups 

to other structural elements, such as beams and slabs, to assess their potential for broader use 

in reinforced concrete construction. Additionally, long-term studies that monitor the 

performance of welded steel mesh in different environmental conditions would provide 

valuable insights into its durability and maintenance needs. Exploring the integration of welded 

steel mesh with other advanced reinforcement materials, such as fiber-reinforced polymers, 

could also open new avenues for innovation in structural design. Finally, field testing in seismic 

zones could offer practical validation of the findings and support the adoption of welded steel 

mesh stirrups in seismic design codes. 

 CONCLUSION FOR CHAPTER 7 

This chapter focused on enhancing the structural analysis of reinforced concrete 

columns, particularly through the use of welded steel mesh stirrups. The study demonstrated 

that incorporating welded steel mesh significantly improves the load-bearing capacity, ductility, 

and overall structural performance of reinforced concrete columns. These findings provide a 

solid basis for revising current reinforcement practices, offering a more effective and 

economical approach to designing concrete columns that are both resilient and durable. The 

research underscores the potential of welded steel mesh stirrups as a valuable reinforcement 

strategy, contributing to safer and more cost-efficient construction practices. 
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The use of welded steel mesh has demonstrated substantial improvements in structural 

performance, particularly in reinforced concrete columns. Moving forward, the thesis explores 

the potential of sustainable materials in structural applications, starting with recycled coarse 

aggregates concrete. 
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8 DEVELOPMENT OF THE MAIN METHODOLOGY 

This chapter presents two published articles. Section 8.1 focuses on the laboratory phase 

of the research, detailing the data collection process and emphasizing the critical lab procedures 

that were essential to ensuring the accuracy and volume of data required. These meticulous 

efforts were fundamental to achieving the high reliability of the results, which is further 

demonstrated by the method proposed in Section 8.2. 

 SHEAR BEHAVIOR OF RECYCLED COARSE AGGREGATES CONCRETE DRY 

JOINTS KEYS USING DIGITAL IMAGE CORRELATION TECHNIQUE 

This chapter is published as a Paper at Infrastructures.  

https://doi.org/10.3390/infrastructures8030060 

 

SOUSA, Jedson Batista; GARCIA, Sergio Luis Gonzalez; PIEROTT, Rodrigo 

Shear Behavior of Recycled Coarse Aggregates Concrete Dry Joints Keys Using 

Digital Image Correlation Technique. In: Infrastructures: 

doi.org/10.3390/infrastructures8030060. 

 

Section 8.1 investigates the shear behavior of recycled coarse aggregates concrete 

(RAC) dry joints keys. As sustainability becomes an increasingly important consideration in 

construction, this chapter evaluates how RAC can be effectively utilized in structural 

applications, ensuring that performance is maintained without compromising on environmental 

responsibility. 

 

ABSTRACT 

In this work, twenty-seven dry joint specimens of prestressed segmental bridges produced using 

recycled coarse aggregate concrete (RAC) were subjected to push-off tests. The substitution 

rate of coarse aggregate for recycled aggregate was 100%. The variables observed were the 

number of keys, including flat, single-keyed, and three-keyed, and the magnitude of the 

confining stress, varying at 1.0, 2.0, and 3.0 MPa. The slippage between both parts of the joint 

and the cracking of the specimens were analyzed using the digital image correlation technique 

(DIC). Equations from the literature were used to predict the shear strength of dry joints with 

recycled coarse aggregate concrete. The experimental results obtained from the present research 
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were compared to those of other conventional concrete researchers. The results showed that the 

dry joints produced with recycled coarse aggregate concrete presented a crack formation in 

conventional concrete joints following a similar mechanism of failure; however, they presented 

lower strength. Some equations in the literature predicted the strength of dry joints with 

recycled coarse aggregate concrete. Based on the analysis performed, adopting a reduction 

coefficient of 0.7 in the AASHTO normative equation was recommended for predicting the 

shear strength of dry joints when produced with recycled coarse aggregates concrete. 

Keywords: 

Dry Joints; Recycled Aggregates Concrete; Push-Off. 

8.1.1 INTRODUCTION 

The concern with the environment and the scarcity of natural resources has driven, in 

recent years, research on reusable and sustainable materials. On a global scale, the construction 

industry has demonstrated a tremendous environmental impact due to the extraction of a large 

number of rocks necessary to obtain concrete, implying the destruction of natural environments 

and atmospheric pollution due to the generation of dust [1]. 

Among the solutions found to reduce this impact, the reuse of construction and demolition 

waste to produce aggregates that will be used to produce new concrete [2], known as recycled 

aggregate concrete (RAC), was highlighted. 

The recycled aggregates derived from this waste present high heterogeneity due to the 

immense variation in materials present. One of those with the highest concentration is mortar. 

The main properties influenced by the presence of mortar in the recycled aggregates are 

water absorption, specific mass, abrasion, and surface texture of the grains [3]. The high 

porosity of the mortar attributes to the recycled aggregate high rates of water absorption and 

reduction of its specific mass. Due to the irregular texture, the mortar also attributes a better 

surface texture to the grain and, consequently, a more significant physical wear. 

Mortar adhered to recycled aggregates represents a weak link in concrete. The bond 

region between the natural aggregate and the adhered mortar corresponds to a low-strength 

region known as the transition zone, causing an increase in the water content on the aggregate 

surface, increasing the water/cement ratio (w/c) in that region. When recycled aggregates are 

used to produce new concrete, a second transition zone appears, now between the cementitious 
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matrix and the recycled aggregate, attributing to this type of concrete a lower condition of 

mechanical strength [4,5]. 

Incorporating recycled aggregates into concrete reduces its mechanical strength and 

durability [6]. The percentage of substitution of natural aggregates for recycled ones is directly 

related to the decrease in the mechanical resistance of concrete. According to Chen et al. [7], 

the modulus of elasticity of recycled aggregate concrete can decrease by about 20% compared 

to ordinary concrete. Khatab et al. [8] showed that for a replacement rate of 50% of natural 

aggregates by recycled ones, there was a decrease of 12% in the compressive strength of 

concrete, reaching 23% strength reduction when the replacement content was 100%. Meddah 

et al. [9] verified that the splitting tensile strength of recycled concrete decreases about 9% 

compared to normal strength concrete. Naouaoui et al. [3] cite that recycled aggregates can 

increase the water absorption of concrete by up to 50%. Lavado et al. [10] showed that for 

concrete made from recycled aggregates, the results of the slump test were reduced by about 

38% when compared to concrete made from natural aggregates. Feng et al. [11] showed that 

the Poisson ratio of concrete decreased by 10% when replacing natural aggregates with recycled 

ones. It was also verified that when fine aggregates were replaced by sea sand and when sea 

water was used in the mixture composition, the Poisson coefficient of recycled coarse aggregate 

concrete increased by 20%. 

With the advent and growth in the use of RAC in structural elements, this paper discusses 

the use of recycled coarse aggregates in dry joints with shear keys, which allow the connection 

of prestressed segmental bridge staves. In this type of structure, the bridge superstructure is 

divided into segments, called staves, and in the region where these staves are connected, there 

are shear keys. These joints present concrete protuberances along the cross-section of the 

dowels, called shear keys, and their resistance to shear stresses is given by the mechanical 

locking of these keys (Figure 8.1.1). 
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Figure 8.1.1 - (a) Representation of a segmental post-tensioned bridge arch, (b) detail of the 
region of the dry joint of shear key, (c) representation of the shear plane, (d) representation of 

the smooth region of the joint and (e) representation of the key region. 
 

The sum of two strength portions gives the shear strength of dry joints: the portion due 

to the flat region of the joint (Figure 8.1.1c) and the shear keyed region (Figure 8.1.1d). 

The flat region of the joint behaves similarly to two concrete interfaces sliding against 

each other, with no reinforcement crossing the shear plane (Figure 8.1.1b). The shear- friction 

theory proposed by P. Birkeland and H. Birkeland [12] establishes that the stress transfer 

mechanism between these two parts depends on the friction generated. The theory shows that 

the resistance portion of this region is directly related to the surface roughness because 

protuberances on the surface of the sliding interface generate mechanical locking that 

contributes to shear resistance. The coefficient of friction (μ) can be determined by calculating 

the ratio between the shear stress and confinement stress, as proposed by Buyukozturk et al. 

[13]. This parameter is used to quantify the frictional component of a system. 

On the other hand, the keyed region corresponds to the behavior of a monolithic concrete 

piece, and its strength is directly related to the properties of the concrete used. 

If the part is subjected to confinement action, both the flat region and the keyed region 

benefit from strength gains. The confinement contributes to a better mechanical interlock 

between the protuberances on the flat surface of the joint and provides the concrete with a state 

of confinement. 

The behavior of concrete, when submitted to shear, depends on the strength of its 

aggregates in relation to the strength of the cement matrix. If the aggregates have lower strength 

than the cementitious matrix, the cracks tend to cut them [14,15,16,17]. The opposite occurs in 

concrete with aggregates having superior strength to the cementitious matrix, where cracks tend 

to bypass them, as shown in Figure 8.1.2. 
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Figure 8.1.2 - Crack propagation in concrete with aggregates (a) more and (b) less resistant than 
the cementitious matrix. 

 

When the cracks bypass the aggregates, an irregular and rough surface appears at the 

shear interface due to the exposed aggregates. This surface plays a mechanical interlocking 

mechanism between the aggregates, contributing to the shear strength of this concrete. 

However, when the cracks cut the aggregates, surfaces with slight roughness appear at 

the shear interface, decreasing the interlocking effect of the aggregates and thus reducing the 

shear strength portion of this concrete. 

Several kinds of research have been conducted in recent years on the mechanical 

behavior of dry joints of prestressed segmental bridges using conventional concrete. Ahmed 

and Aziz in 2019 [18] conducted state-of-the-art research on the topic and gathered those 

performed between 1959 and 2019. To date, no study using recycled aggregate concrete in dry 

joints has been carried out. 

As a result of much research, equations for predicting the strength of these joints have 

been proposed. 

Of the studies proposing equations, Buyukozturk et al. [13] verified the behavior of flat 

joints and single-keyed joints, whether they contain epoxy resin or not. The authors produced 

specimens for push-off rupture tests submitted to confining stresses of 0.69, 2.07, and 3.45 

MPa. They concluded that the confining stress is a fundamental parameter for the strength of 

the joints, both flat and keyed, with the strength being higher as the confining stress increases, 

and the presence of epoxy resin is another factor that positively influences the strength of the 

joints. Rombach and Specker [19] studied dry joints’ behavior by using a numerical simulation 

of finite elements. The authors proposed an equation for predicting the shear strength of dry 

joints, which had the keyed configuration as a variable. Turmo et al. [20] evaluated the shear 
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strength of dry joints according to equations found in the literature and proposed to adopt the 

one that most closely matched the experimental results to the Eurocode 2 guidelines. The 

chosen equation was used by AASHTO [21] because it presented the lowest standard deviation 

in the relationship between experimental and predicted results. The authors proposed an 

equation for predicting the shear strength of dry joints with concrete of compressive strength 

less than 50 MPa. Alcade et al. [22] developed a finite element study for four different types of 

joints varying the confining stress in 1.0, 2.0, and 3.0 MPa. The authors concluded that the 

average shear stress decreases as the number of keys increases, but this behavior changes at 

high confining stresses. The authors comment that this behavior results from high confining 

stresses providing the joints with a more plastic behavior to the keys. Therefore, they can 

develop their maximum resistant capacity. The authors proposed an equation for predicting the 

shear strength of dry joints with concrete of 50 MPa and confining stresses of less than 3.0 

MPa. Ahmed and Aziz [18] performed state-of-the-art research of dry joints. The authors 

commented on the significant variability of parameters that hinder a good correlation between 

experimental and predicted results for dry joint strength, such as the small database, structural 

differences, and geometric modeling of specimens. Through statistical analysis, the authors 

proposed equations for predicting the shear strength of dry joints. 

The equations used for predicting dry joint strength are gathered in Table 8.1.1. The 

designations and notation used in the equations are shown in Table 8.1.2. 

 

Table 8.1.1 - Main equations for predicting the shear strength of dry joints. 
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Table 8.1.2 - Notation used in the equations in Table 8.2.1. 

 

 

All the proposed equations were formulated for conventional concrete; no specific 

equations exist in the literature for joints produced with concrete made from recycled coarse 

aggregates. 

The fact that recycled coarse aggregates are less resistant than conventional ones 

influences the shear strength of the concrete produced with them. Fonteboa et al. [25] analyzed 

the shear behavior of concrete with recycled coarse aggregates with 50% replacement content. 

The results showed a reduction of about 20% in the shear strength of these types of concrete 

compared to conventional concrete. Xiao et al. [26] investigated the influence of the 

replacement content of natural coarse aggregates by recycled ones on the shear strength of 

concrete. The results showed that the substitution level significantly influenced the ultimate 

load of specimens with the same compressive strength as concrete, with a similar load for 

substitution levels below 30%. However, they observed a reduction in load for substitution 

levels of 30% to 50%. Rahal [27] performing push-off tests, concluding that for replacement 

contents of 20% and 50% of natural aggregates by recycled aggregates, a decrease in shear 

strength of 7% was obtained when the replacement rate increased to 100% and when the shear 

strength decreased by 28%. Liu et al. [4] studied three different types of recycled aggregate 

concrete and verified the influence of the type of recycled aggregate on the strength of concrete 

when produced by them. The experimental results showed a decrease of up to 26% in the shear 

strength of concrete when compared to concrete produced with natural aggregates. Trindade et 
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al. [28] studied the influence of the percentage of replacement of natural aggregates by recycled 

ones with different levels of compressive strength of the original concrete. The results showed 

that increasing the replacement content of aggregates directly influenced the loss of shear 

strength of concrete, and this loss was more significant in concrete with recycled aggregates 

with lower compressive strengths of the original concrete. The results showed losses of 18%, 

33%, and 38% in the shear strength of the concrete for the replacement levels of 30, 50, and 

100%, respectively, in the recycled aggregate concrete with low strength of the original 

concrete. For recycled aggregate concrete with high strength of the original concrete, the 

researchers comment that there was no statistically significant difference. Trindade et al. [29] 

studied the influence of the addition of steel fibers in the shear behavior of recycled coarse 

aggregate concrete, having different strengths from the original concrete. The results showed 

that the concrete from the group of aggregates with low strength of the original concrete 

presented about a 33% loss in shear strength, while for those from the high strength group, the 

results were statistically equal. The addition of steel fiber in the recycled coarse aggregate 

concrete provided an increase in shear strength of about 23.8% for the concrete from the group 

of aggregates with low strength of the original concrete and about 17% for those from the high 

strength group. 

Global industry is increasingly facing a future scenario of applications of 

unconventional materials in civil construction due to the growing demand and scarcity of 

natural resources, as well as the pollution caused by the obtaining of materials. The studies 

regarding concrete produced with recycled aggregates show that this material has 

characteristics and properties that resemble conventional concrete, although its main 

disadvantage is its reduced resistance. Therefore, further research is needed to expand the 

applicability of this material in the future. 

Due to the lack of research on the use of recycled coarse aggregate concrete (RAC) in 

dry joints and aiming to provide support for structural elements, this paper studies the behavior 

of dry joints of prestressed segmented bridges when produced with RAC. Twenty-seven dry 

joint specimens were produced with RAC with 100% coarse aggregate content. The variables 

analyzed were the number of keys (flat, single-keyed, and three-keyed) and the magnitude of 

the confining stress (varying in 1.0, 2.0, and 3.0 MPa). The maximum normalized shear stress 

of the joints produced with concrete from recycled coarse aggregates was compared to those of 

Jiang et al. [30] due to the similarity of the specimens, the concrete strength, and the variables 

used in this research, produced using conventional concrete. The cracking load and the failure 

mode of the joints were also analyzed. Then, the maximum normalized shear stress of the results 
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obtained in this research was compared with those of other researchers. Finally, the viability of 

using the proposed equations was verified for calculating the ultimate capacity of dry joints of 

conventional concrete when used in RAC dry joints. 

8.1.2 Materials and Methods 

The methodology of this work is presented in the flowchart of Figure 8.1.3. 

 

Figure 8.1.3 - Flowchart of the adopted methodology. 
 

8.1.2.1 Materials 

A Brazilian cement type CPII-E-32 [31] (Portland cement with the addition of 

granulated blast furnace slag and a minimum 28-day compressive strength of 32 MPa) was used 

as the main binder in the concrete production. 
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The conventional fine aggregate was natural quartz sand from the Paraíba do Sul River, 

in the city of Campos dos Goytacazes–RJ, with a specific mass equal to 2.63 g/cm3 [32] and a 

unit mass in the loose and dry state equal to 1.54 g/cm3 [32]. 

The recycled coarse aggregates were produced by crushing waste materials from 

specimens used in previous research, from which the concrete had a compressive strength of 

50 to 70 MPa. Figure 8.1.4 shows the manufacturing process of the recycled coarse aggregates, 

and Table 8.1.3 shows information about the recycled coarse aggregates. 

 

 

Figure 8.1.4 - Scheme for the production of recycled coarse aggregates; (a) specimens from 
previous tests with concrete having a compressive strength between 50 MPa and 70 MPa were 
collected; (b) the specimens were fragmented for size reduction and stored; (c) a jaw crusher 

was then used to reduce their size to the size of coarse aggregate for concrete; (d) the fragments 
were washed, sieved to a particle size between 19 and 9.5 mm and then stored in a dry place. 

 

Table 8.1.3 - Physical characteristics of recycled coarse aggregates. 

 

 

Figure 8.1.5 shows the granulometry of the recycled coarse aggregates and the fine 

aggregates used in concrete. 
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Figure 8.1.5 - Granulometry of aggregates. 
 

8.1.2.2 Concrete Proportioning 

The concrete dosage was performed to obtain a compressive strength of 30 MPa at 28 

days. Table 8.1.4 shows the quantities of the materials in the dosage. 

 

Table 8.1.4 - Concrete mixing ratios. 

 

 

The compressive strength at 28 days was determined on cylindrical samples with a 

diameter of 100 mm and a height of 200 mm. 

The concrete was produced with a 100% substitution content of conventional aggregates 

by recycled aggregates. Table 8.1.5 shows the properties of RAC used in producing the dry 

joint specimens. 
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Table 8.1.5 - Physics and mechanical characteristics of recycled coarse aggregate concrete. 

 

 

8.1.2.3 Details of Specimens 

Push-off test specimens were produced similar to those used by other researchers 

[13,30,40,41,42,43,44] to study the shear behavior of dry joints with recycled coarse aggregate 

concrete. 

The dimensions and configurations of the specimens used in the experiments of the flat, 

single-keyed, and three-keyed dry joints are shown in Figure 8.1.6. 
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Figure 8.1.6 - Dimensions and geometry of the dry joint specimens (units in cm). 
 

Twenty-seven dry joint specimens were produced, and the results were obtained using 

the average of three specimens. All specimens were 100 mm wide. Reinforcements with a 

diameter of 12 mm were used in the specimens to ensure that the failed occurs by shear-

controlled failure in the keys. The flat and single-keyed dry joints specimens had a shear plane 

area of 30,000 mm2, and the three-keyed dry joints specimens had 50,000 mm2. 

Table 8.1.6 shows information about the dry joint specimens. The following 

nomenclature was chosen: CPRX–J–T, where CPR means dry joint specimen with recycled 

coarse aggregates concrete; the X is the specimen number, varying from 1 to 3; the J is the joint 

type: (L) Flat, (1) single-keyed, and (3) three-keyed; and T is the applied confining stress (1.0, 

2.0, or 3.0 MPa). For example, specimen CPR2-1-3.0 is the second specimen of the dry joint 

specimen with one key subjected to the 3.0 MPa confining stress. 
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Table 8.1.6 - Summary of the experimental program. 

 

 

8.1.2.4 Details of Specimens 

The specimens were produced in wooden forms (Figure 8.1.7a). To produce the shear 

key specimens, the part that receives the key was produced first (Figure 8.1.7b). Then, the 

wooden parts were removed from the formwork in the shear plane, and the key part was cast 

using the previously part as a mold (Figure 8.1.7c). The flat joint specimens were produced 

similarly. The specimens are shown in Figure 8.1.8. 
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Figure 8.1.7 - Stages of casting the specimens: (a) wooden forms; (b) casting the part that 
receives the key; (c) concreting the key part. 

 

Figure 8.1.8 - Dry joint specimens with recycled coarse aggregates concrete. 
 

8.1.2.5 Setup and Instrumentation 

For the push-off type rupture tests, a metallic gantry and a model 244.41 hydraulic 

actuator were used, coupled to a load cell with a capacity of 500 kN from MTS®. The tests 

were carried out with controlled deformation, with a speed of 1 mm/min, commanded by the 

hydraulic unit that recorded the applied load in real time, as shown in Figure 8.1.9. 
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Figure 8.1.9 - Hydraulic press for applying the load. 
 

The specimens’ confining stress (σn) was applied by a system of bars, nuts, and steel 

plates. The plates had dimensions of 200 × 300 × 20 mm and 200 × 500 × 20 mm. Applied 

compressive forces due to reaction forces were derived from the bars (F). Figure 8.1.10a 

presents the scheme for applying forces and generating the confining stress in the confinement 

system. 
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Figure 8.1.10 - (a) schematic of the confinement system, (b) metal plates used to apply the 
confinement stress, and (c) steel bars instrumented to generate the reaction force on the plates. 

 

The reaction forces were generated due to the application of deformations in the steel 

bars. The rebars were instrumented with strain gauge model BX120-3AA (Figure 8.1.10c) and 

monitored in real-time as the nuts were tightened. 

The plates were drilled for the passage of the bars to provide a uniform application of 

stresses in the specimens (Figure 8.1.10b). In addition, steel rollers were used between the glued 

plates on the side that slides vertically, enabling their vertical displacement. 

Figure 8.1.11 shows the single-keyed dry joint specimen with installed the confining 

system. 
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Figure 8.1.11 - Single-keyed specimen with installed the confining system and DIC setup. 
 

The stresses applied were 1.0, 2.0, and 3.0 MPa. Table 8.1.7 shows the strains required 

in the bars for the reaction of the forces on the plates in specimens with shear areas of 30,000 

mm2 and 50,000 mm2. 

 

Table 8.1.7 - Deformations required in the threaded bars. 

 

 

8.1.3 Digital Image Correlation Technique 

In this research, the installation of the test sample surface deformation measurement 

system by the image processing method (DIC) was performed by a Canon EOS REBEL T1i 

camera, configured with a maximum resolution of 2352 × 1568 pixels, placed on a tripod stand, 

1000 mm from the object (FOV), which was attached. The setup included a Canon Lens Canon 

EF lens with a minimum focus distance of 0.023 m and a maximum focus distance of 0.35 m, 

which is illuminated by four LED lamps of 18 watts with a brightness of 1800 lux to control 

the brightness level of the sample surface plane to be consistent throughout the test. 



198 
 

To create the pattern on the monitored surface of the specimens, white paint was used 

to cover the entire region of interest to obtain an opaque base surface. Subsequently, a black 

spray was randomly sprayed over the base of the initial white paint. To capture each specimen’s 

sequence of shots, the Windows application called digiCamControl was used. With this, it was 

possible to control the camera’s shooting parameters; besides transferring images directly to 

the computer that allowed visualization of the resulting images displayed on the computer 

screen, the machine was configured for an acquisition frequency of 1 image every 2 s. 

The images were obtained in a consistent way for all test samples, to prevent any 

interference that could be caused by external agents, such as lighting or capture angle. The 

camera was positioned 1 m away from the test samples, with a leveled horizontal orientation, 

and a blue background was placed behind the test sample. The focus of the camera was adjusted 

manually, and the environment was properly lit. A pre-capture was performed and analyzed, 

and the analysis software indicated if the quality of the captured image was compatible with 

that of the other tests by means of an analysis grid. If not, adjustments to the setup were made. 

The GOM Correlate Windows application [45] was used for Digital Image Correlation analysis. 

The analysis was based on the insertion of points on the mesh projected on the specimens and 

their respective displacements. With this, it was possible to calculate the deformations and 

displacements of these points concerning the applied load. 

The GOM Correlate [45] software function “Distance” was used to analyze the sliding 

of both joint parts. The images were scaled based on the width of the test body, ensuring 

accurate measurements. Figure 8.1.12a shows the arrangement of points and distances in a 

single-keyed dry joint. 
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Figure 8.1.12 - Application of the GOM Correlate: (a) analysis of the vertical displacement of 
the specimen and (b) analysis of the crack opening in the shear key. 

 

In recent years, crack analysis has been improved through new technologies and 

methods [46,47]. In this study, the cracking analysis was conducted by monitoring the 

deformation in the horizontal axis (εx) Through a mesh created in each figure in the GOM 

Correlate software, the strain history (εx) showed the displacement zones that triggered the 

appearance of the cracks. With this, it was possible to measure the opening of these cracks with 

the “Distance” tool of GOM Correlate [45]. Figure 8.1.12b shows the zones of high strain (εx) 

and the arrangement of virtual extensometers. 

The utilization of this technique enabled the monitoring of deformations across the test 

specimen as the load increased, thereby enabling the visual examination of the stress and 

deformation fields of the material. Furthermore, the analysis of the data conducted using the 

software facilitated greater accuracy and optimization of the results. Moreover, the ease of 

assembling the testing setup and the simplicity with which the data were obtained gave this 

technique a considerable advantage in the research setting. 
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The results of the push-off tests were expressed in normalized shear stress versus sliding 

curves. The normalized shear stress was obtained by dividing the stress in the shear plane by 

the square root of the concrete compressive strength obtained in each specimen. 

The curves were obtained by the average between the curves of the three samples of 

each specimen. It is observed that the maximum normalized stress in the average curves does 

not match the value of the average of the maximum normalized shear stress of the specimens 

because the curves of the samples presented different slopes for the maximum normalized 

stress. 

8.1.4 Results and Discussion 

8.1.4.1 Flat Dry Joints 

Three flat dry joint specimens were subjected to confining stresses of 1.0, 2.0, and 3.0 

MPa. Figure 8.1.13 shows the average normalized shear stress curves (τn) versus relative 

vertical displacement for the three confining stresses. An approximately linear increase can be 

seen up to the point where the joint surfaces start to slip. The slip increases gradually after the 

flat joint ruptures, and the load remains constant. The coefficients of friction (𝜇) of the flat joints 

with 1.0, 2.0, and 3.0 MPa of confining stress obtained through the Buyukozturk et al. [13] 

resulted in 0.566, 0.534, and 0.503, respectively, values close to those used by other researchers 

[20,30,41,42] for conventional concrete. No cracks were observed during the test, and the shear 

plane surface was not damaged; only a thin layer of dust was observed due to friction between 

both parts. The results showed that the confining stress contributed to the increased normalized 

shear stress of the flat RAC dry joints. 
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Figure 8.1.13 - Normalized shear stress versus relative vertical displacement curves for the flat 
RAC dry joint specimens. 

 

8.1.4.2 Single-Keyed Dry Joints 

Three single-keyed dry joints were tested at confining stresses of 1.0, 2.0, and 3.0 MPa. 

The results showed that increasing the confining stress increased the normalized shear stress of 

single-keyed RAC dry joints. The normalized shear stress versus relative vertical displacement 

curves is shown in Figure 8.1.14. It is observed that the normalized shear stress increases 

approximately linearly until reaching the strength limit of the key, and then high slip occurs in 

conjunction with the decrease in load. 
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Figure 8.1.14 - Normalized shear stress versus relative vertical displacement curves for the 
single-keyed RAC dry joint specimens. 

 

8.1.4.3 Three-Keyed Dry Joints 

Three three-keyed dry joints were tested at confining stresses of 1.0, 2.0, and 3.0 MPa. 

Figure 8.1.15 shows the normalized shear stress versus relative vertical displacement curves; it 

is noticed an increase in the shear stress initially in a linear way; however, different from the 

curves of the single-keyed dry joints, when the load is close to the rupture, the curves tend to 

incline until reaching the rupture of the keys; this behavior shows higher ductility in the rupture 

of the three-keyed dry joints. This occurred due to the rupture in a sequence of the keys, where 

the first lower key is the first to rupture, followed sequentially by the others. This behavior has 

been seen by other researchers [22,30,40,42]. Again, it was observed that increasing the 

confining stress contributed positively to the increase in strength of three-keyed RAC dry joints. 
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Figure 8.1.15 - Normalized shear stress versus relative vertical displacement curves for the 
three-keyed RAC dry joint specimens. 

 

The failure load, maximum shear stress, normalized cracking shear stress, and 

maximum normalized shear stress at failure of the flat dry joints and single-keyed and three-

keyed dry joints are presented in Table 8.1.8, along with the results of the maximum shear stress 

of Jiang et al. [30]. 

 

Table 8.1.8 - Summary of experimental results of the RAC dry joints and the results presented 
by Jiang et al. [30]. 
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Table 8.1.9 compares the experimental results of this research with those obtained by 

Jiang et al. [30]. 

 

Table 8.1.9 - Relationship between the experimental results of this research and those from 
Jiang et al. [30]. 

 

 

The results showed that the dry joints of concrete with recycled coarse aggregates 

presented reduced shear strength values compared to conventional concrete (except the three-

keyed joint submitted to confining stress of 1.0 MPa). This shows the brittle characteristic of 

this material to shear. 

The lower resistance of RAC occurs because the recycled coarse aggregates have lower 

resistance than the conventional ones due to the percentage of adhered mortar. This 

characteristic contributes to the cracks to cut the recycled aggregates, reducing the mechanical 

interlock due to the reduction of roughness in the sliding surface, thus interfering with the shear 

strength of the joint [14]. 

The results obtained from experiments on smooth and three-keys RAC concrete joints 

showed values comparable to those of conventional concrete joints by Jiang et al. [30], while 

the one-key joints showed significantly lower values. This is likely due to the lower resistance 

of the RAC concrete compared to the conventional concrete, resulting in the one-key joints not 

reaching the full multiple resistance of the keys before breaking. However, the multiple keys 

joints of both types of concrete presented values of normalized shear stress that were similar in 

magnitude, which can be attributed to the progressive rupture effect of the keys. 
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8.1.4.4 Influence of the Confining Stress 

Figure 8.1.16 shows the influence of the confining stress on the maximum normalized 

shear stress of dry joints with RAC and the results of Jiang et al. [30]. 

 

 

Figure 8.1.16 - Influence of confining stress on increasing the maximum normalized shear stress 
of the RAC dry joints and the results of Jiang et al. [30]. 

 

The results showed that maximum normalized shear stress increases as the confining 

stress increases for all dry joints with recycled coarse aggregate concrete, showing its 

importance as a resistant mechanism. 

For flat joints, the strength gain when the confining stress increased from 1.0 to 2.0 MPa 

was 88.89%, and when it increased from 2.0 to 3.0 MPa, it was 35.29%. 

For the joints with shear keys, the strength gain when the confining stress increased 

from 1.0 to 2.0 MPa was 15.56% for single-keyed joints and 21.43% for three-keyed joints. 

When the confining stress increased from 2.0 to 3.0 MPa, the strength gain was 15.38% for 

single-keyed joints and was 17.65% for three-keyed joints. 

The experimental results of Jiang et al. [30] showed that the strength gain when the 

confining stress increased from 1.0 to 2.0 was 80% for flat joints, 25.71% for single-keyed 

joints, and 30.36% for three-keyed joints. 
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Comparing the flat joints, the increase in the confining stress was more effective in the 

strength gain of the dry joints produced with RAC. However, in joints with single- and three-

keyed joints, the strength gain was more effective in joints produced with conventional 

concrete. 

These results show that confinement in concrete with recycled coarse aggregates is less 

effective than in conventional concrete. As seen, the portion of resistance provided by the shear 

keyed is due to the monolithic region of concrete in the keyed that cuts the shear plane. Thus, 

this portion of resistance is directly related to the strength of the concrete used in the key. 

Therefore, the strength gain in concrete due to confinement is less effective in concrete with 

recycled coarse aggregates. 

 

8.1.4.5 Influence of the Number of Keys 

Figure 8.1.17 shows the influence of the number of keys on the maximum normalized 

shear stress for different confinement stresses in the dry joint with RAC. 

 

 

Figure 8.1.17 - Influence of the number of keys on the maximum normalized shear stress of the 
RAC dry joints. 

 

It is observed that the maximum normalized shear stress increased when the number of 

keys was increased, and this gain was more effective when it was increased from none to single-

keyed. 
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When the number of keys increased from none to one, the strength gain was 400%, 

205.88%, and 160.87% for the confining stresses of 1.0, 2.0, and 3.0 MPa, respectively. When 

the number of keys increased from one to three, the strength gain was 24.44%, 30.77%, and 

33.33% for the confining stresses of 1.0, 2.0, and 3.0 MPa, respectively. 

This shows the typical behavior of multiple-keyed joints in not having a proportional 

gain in strength with the increasing number of keys due to the increase in imperfections and 

stress concentrations [22,30,40,42,47]. 

8.1.4.6 Cracking Pattern of Keyed Dry Joints Specimens 

The single-keyed dry joints showed Jiang’s type 2 cracking model [30]. In this model, 

an inclined crack at approximately 45° appears at the base of the shear key. As the load 

increases, several other small cracks appear in the shear plane at approximately 90°. Rupture 

occurs when all these little cracks cut through the entire shear key. Figure 8.1.18 shows the type 

2 cracking model and the cracking kinetics of the specimen CPR1-1-1.0 with their load ratios 

with respect to the ultimate load (Vu). 

 

 

Figure 8.1.18 - (a) Crack model 2 of the single-keyed dry joints of Jiang et al. [30] and (b) crack 
pattern of the specimen CPR1-1-1.0. 

 

In the three-keyed specimens, cracking occurred sequentially in the keys. The lower key 

was the first to crack and break, causing the other keys to break in sequence. Figure 8.1.19 
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shows the formation of cracks in the specimen CPR2-3-1.0, with their load proportions about 

the failure load (Vu) and those presented by Jiang et al. [30] for the three-keyed dry joints. 

 

Figure 8.1.19 - (a) Crack model of the three-keyed dry joints of Jiang et al. [30] and (b) crack 
pattern of the specimen CPR2-3-1.0. 

 

8.1.4.7 Comparison between the Results of This Research with Those of Other Researchers 

Much research about the shear resistance of conventional or high strength dry concrete 

joints has been studied in recent years. Table 8.1.10 gathers information about the research. 
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Table 8.1.10 - Information about dry joints specimens from previous papers. 

 

Figure 8.1.20, Figure 8.1.21 and Figure 8.1.22 compare the maximum normalized shear 

stress versus confining stress obtained by other researchers and the experimental results of this 

research for flat, single-keyed, and three-keyed dry joints with recycled coarse aggregate 

concrete. 
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Figure 8.1.20 - Maximum normalized shear stress in flat dry joints obtained for specimens from 
ordinary (black lines) [13,30,40] and RAC (blue line). 

 

 

Figure 8.1.21 - Maximum normalized shear stress in single-keyed dry joints obtained for 
specimens from ordinary (black lines) [13,30,40,41,43,44] and RAC (blue line). 
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Figure 8.1.22 - Maximum normalized shear stress in three-keyed dry joints obtained for 
specimens from ordinary (black lines) [30,40,42] and RAC (blue line). 

 

For flat joints, the results showed that dry joints of concrete with recycled coarse 

aggregates showed strengths close to those of conventional concrete. The shear plane area of 

smooth joints has been observed to vary between studies; however, Figure 8.1.20 reveals that 

this has had minimal effect on the comparison of results, as values have remained consistent 

between both types of concrete. This can be attributed to the similar friction coefficient of RAC 

and conventional concrete. 

The results showed that the single-keyed dry joints with recycled coarse aggregate 

concrete presented the lowest maximum normalized shear stress values. The comparison of the 

results obtained from the key joints with those of the smooth joints, as seen in Figure 8.1.21, 

demonstrates a greater difference. This implies that the monolithic region of the key exhibits 

an increased contribution to the shear resistance of the joints, with the RAC concrete joints 

exhibiting the lowest values due to their lower resistance. In the three-keyed joints, the 

difference between the results was minor compared to the single-keyed joints; presenting even 

similar values, studies have found that in multi-key joints, the rupture sequence of the keys does 

not allow for the full resistance of all of the keys together, which results in values obtained from 

a break that are not equal to three times the values of single-key joints. This rupture sequence 

of the keys, however, does allow for RAC joints to reach values close to those of conventional 

concrete joints. 
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8.1.4.8 Equations for Predicting the Strength of RAC Dry Joints 

Using Equations (1)–(8) for predicting the strength of RAC dry joints in terms of (τun), 

it can be seen in Figure 8.1.23 and Figure 8.1.24 that the most suitable equations for predicting 

single-keyed RAC dry joints were those of Turmo et al. [20], Rombach and Specker [19], and 

EUROCODE 2 [24]. The three-keyed RAC dry joints were Turmo et al. [20] and EUROCODE 

2 [24]. 

 

 

Figure 8.1.23 - Experimental results and prediction of maximum normalized shear stress of the 
single-keyed RAC dry joints using the equations in the literature [13,18,19,20,21,22,23,24]. 

 

 

Figure 8.1.24 - Experimental results and prediction of maximum normalized shear stress of the 
three-keyed RAC dry joints using the equations in the literature [13,18,19,20,21,22,23,24]. 
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The EUROCODE 2 equation has been formulated for calculating the shear resistance 

between concrete surfaces produced at different times. The coefficients proposed by the 

standard for indented interfaces (c = 0.50 and μ = 0.9) were adopted for predicting the resistance 

of dry joints. Nevertheless, the equation has been observed to present conservative values in 

contrast to the equations of Turmo et al. [20] and Rombach and Specker [19], which were 

specifically developed for calculating the resistance of dry joints. 

Table 8.1.11 shows the relationship between the (τun) predicted by the equations in the 

literature and the experimental one. 

 

Table 8.1.11 - Relationship between maximum normalized shear stress predicted by the 
literature equations and experimental results. 

 

 

The normative equation of AASHTO [21] predicts with good approximation the 

strength of single-keyed RAC dry joint for low confining stresses; however, as the confining 

stress increases, the experimental results diverge from the prediction, as can be seen in Figure 

8.1.25. The experimental results showed significantly different values for predicting RAC dry 

joints with three keys of the prediction of the normative equation. 

 

 

Figure 8.1.25 - Experimental results and prediction of maximum normalized shear stress by 
AASHTO [21]. 
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Therefore, the authors recommend using a reduction coefficient of 0.7 for the equation 

of AASHTO in predicting the shear strength of recycled coarse aggregate concrete dry joints. 

8.1.5 Conclusions 

In this research, twenty-seven dry joint specimens produced with concrete from recycled 

coarse aggregates were subjected to push-off tests to study their shear strength. The variable 

parameters were the number of keys (flat, single-keyed, and three-keyed) and the magnitude of 

the confining stress (1.0, 2.0, and 3.0 MPa). The analysis of the results was performed using 

the digital image correlation method. It was possible to verify the relative vertical displacement 

between both parts of the joint and the cracking kinetics. Finally, the prediction of the literature 

equations for dry joints produced with recycled coarse aggregates concrete was verified. The 

results enabled the following conclusions: 

 The dry joints produced with recycled coarse aggregates concrete showed 

similar behavior during the push-off test as those produced with conventional 

concrete. The failure of RAC joints was caused by the formation of a crack at 

the base of the shear keys, at an angle of approximately 45 degrees to the 

horizontal plane. With increasing load, additional cracks appeared in the shear 

plane of the keys, leading to the ultimate rupture when the cracks cut through 

the key. The cracking of single-keyed dry joint specimens with recycled coarse 

aggregates concrete followed model 2 as presented by Jiang et al. [30]. The 

cracking of the three-keyed dry joint specimens with recycled coarse aggregates 

concrete showed the cracking pattern in a sequence of the shear keys, as seen in 

previous work; 

 The normalized shear strength of dry joints with recycled coarse aggregates 

concrete was lower when compared to the results of other researchers obtained 

with conventional concrete. The results of this study indicate that, although RAC 

concrete is less resistant than conventional concrete, its load versus vertical slip 

curves display similar trends. Furthermore, a reduction in the normalized shear 

stress was observed for smooth joints, with decreases of 10%, 18%, and 22% for 

the confining stresses of 1.0, 2.0, and 3.0 MPa, respectively. Single-key joints 

exhibited a greater reduction, with decreases of 38%, 49%, and 44%. The three-
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keys joints showed the least difference between results, with reductions of 6% 

and 8% for the confining stresses of 1.0 and 2.0 MPa, respectively. This is likely 

due to the rupture effect in sequence of the keys, which does not permit the full 

strength of the keys in the joint; 

 The confining stress proved an essential resistance mechanism for dry joints with 

recycled coarse aggregate concrete. When the confinement stress of the smooth 

joints was increased from 1.0 MPa to 2.0 MPa, the strength gain was 88.89%, 

and from 2.0 MPa to 3.0 MPa, it was 35.29%. For the joint with keys, when the 

confinement stress was increased from 1.0 MPa to 2.0 MPa, the strength gain 

was 15.56% for one key and 21.43% for three keys. Furthermore, when the 

confinement stress increased from 2.0 MPa to 3.0 MPa, the strength gain was 

15.38% for one key and 17.65% for three keys; 

 The number of keys influenced the resistance of the dry joints, and its increase 

was beneficial for the final resistance of the joint. When the number of keys 

increased from none to single-keyed, the strength gain was 400%, 205.88%, and 

160.87% for the confining stresses of 1.0, 2.0, and 3.0 MPa, respectively. When 

the number of keys increased from single-keyed to three-keyed, the strength gain 

was 24.44%, 30.77%, and 33.33% for the confining stresses of 1.0, 2.0, and 3.0 

MPa, respectively; 

 Equations of the literature used to predict the maximum load on dry joints with 

recycled coarse aggregates concrete showed safe values. The results showed that 

for single-keyed RAC dry joints, the equations of Turmo et al. [20], Rombach 

and Specker [19], and EUROCODE 2 [24] provided conservative values, while 

for the three-keyed RAC dry joints were those of Turmo et al. [20] and 

EUROCODE 2 [24]; 

 The normative equation of AASHTO [21] satisfactorily predicted the strength 

of the single-keyed dry joint with recycled coarse aggregates concrete for the 

confining stress of 1.0 MPa; however, as the confining stress increased, the 

experimental results deviated from the forecast. For joints with three keys, the 

experimental results showed values far from the normative prediction; 

 The authors recommend the consideration of a minimization coefficient in the 

AASHTO [21] normative equation in the value of 0.7 for the prediction of 

recycled coarse aggregates concrete dry joints. 
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In this study, the behavior of dry joints produced with recycled coarse aggregate 

concrete was found to be comparable to that of conventional concrete joints in terms of rupture 

and cracking mode. The application of this material in dry joints of prestressed segmental 

bridges was further reinforced through the use of a reduction coefficient in the AASHTO 

normative equation (0.7). Further studies are required, including an analysis of the bending 

effort exerted on dry joints due to moments in the bridge abutment, an evaluation of the 

mechanical behavior of RAC concrete dry joints with varying percentages of aggregate 

substitution, and an investigation into the behavior of the joints with increased shear keys. 
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8.1.7 discussion of Chapter 8.1 

8.1.7.1 Key Findings 

The experimental results indicated that RAC dry joint keys exhibit shear behavior that 

is comparable to, but slightly different from, that of traditional concrete joints. The differences 

in performance are primarily due to the inherent variability in the properties of recycled 

aggregates, such as differences in particle size distribution, strength, and durability. Despite 

these challenges, the study demonstrated that with appropriate design modifications, such as 

optimizing the mix design and joint geometry, RAC can be used effectively in structural 

applications. This finding is significant as it supports the use of recycled materials in 

construction, contributing to sustainability goals without sacrificing structural integrity. 

8.1.7.2 Implications 

The implications of these findings are particularly relevant in the context of sustainable 

construction. As the construction industry seeks to reduce its environmental footprint, the use 

of recycled materials like RAC becomes increasingly important. This study provides evidence 

that RAC can be a viable alternative to traditional concrete in certain structural applications, 
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such as dry joints keys, provided that its unique properties are properly managed. The findings 

could encourage wider adoption of RAC in the industry, promoting the development of more 

sustainable construction practices. Additionally, the research highlights the need for updated 

design guidelines that account for the specific characteristics of recycled materials, ensuring 

their safe and effective use in structural applications. 

8.1.7.3 Limitations 

While the study offers promising results, there are some limitations that should be 

considered. The performance of RAC dry joint keys was evaluated under specific conditions, 

which may not encompass the full range of environmental and loading scenarios encountered 

in real-world applications. Additionally, the variability in the quality of recycled aggregates, 

depending on the source and processing methods, could affect the generalizability of the results. 

Further research is needed to explore the long-term performance of RAC in various conditions 

and to develop standardized methods for assessing the quality and suitability of recycled 

aggregates for structural use. 

8.1.7.4 Future Work 

Future research could focus on refining the mix design of RAC to further enhance its 

performance in structural applications. This could include exploring the use of additives or 

supplementary materials to improve the consistency and strength of RAC. Additionally, studies 

that investigate the long-term durability and performance of RAC in different environmental 

conditions, such as exposure to freeze-thaw cycles or corrosive environments, would provide 

valuable insights. Finally, expanding the research to include other structural applications of 

RAC, such as in beams, slabs, or load-bearing walls, could broaden the understanding of its 

potential in sustainable construction. 

8.1.8 conclusion for Chapter 8.1 

This chapter explored the shear behavior of recycled coarse aggregates concrete (RAC) 

dry joints keys, a topic of growing importance in the context of sustainable construction. The 

study found that while RAC dry joint keys can perform adequately, there are specific design 

considerations that must be taken into account to ensure their performance matches or exceeds 

that of traditional concrete joints. These findings contribute to the broader effort to incorporate 
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sustainable materials into structural applications without compromising on safety or 

performance. The research highlights the potential of RAC as a viable material for structural 

applications, provided that its unique characteristics are properly accounted for in design. 

The findings in this chapter highlight the potential for RAC to replace traditional 

materials in certain applications, provided that design modifications are made. Extending this 

exploration, the next chapter introduces a predictive model tailored to assess the strength of 

RAC in critical infrastructure applications. 
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 RECYCLED AGGREGATE CONCRETE IN BRIDGE DRY JOINTS: A NOVEL 

APPROACH FOR STRENGTH PREDICTION 

This chapter is in publishment as an article in Engineering Sustainability.  

 

PIEROTT, Rodrigo et al. Recycled Aggregate Concrete in Bridge Dry Joints: 

A Novel Approach for Strength Prediction. In: Engineering Sustainability. 

 

Section 8.2 presents a novel approach for predicting the strength of recycled aggregate 

concrete in bridge dry joints. This chapter builds on the previous discussions of RAC's material 

properties by developing a robust predictive model that supports the integration of sustainable 

materials into large-scale infrastructure projects. 

 

Abstract: This study delves into the application of Recycled Aggregate Concrete (RAC) in 

prestressed segmental bridges, with a focus on evaluating its mechanical properties in essential 

joint areas. Analyzing 27 dry joint specimens, it uncovers the comparative reduction in shear 

strength of RAC, especially in single-keyed joints, against traditional concrete. Incorporating 

machine learning techniques such as Linear Regression and Random Forest, the research 

successfully develops an innovative predictive model that accurately estimates RAC's load 

capacity in bridge constructions. This model, tailored to RAC's distinctive characteristics, 

signifies a leap forward in sustainable construction, marrying advanced data analytics with 

practical engineering to enhance RAC's effectiveness in pivotal structural roles. 
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8.2.1 INTRODUCTION 

The construction industry is undergoing significant changes, driven by the urgent need 

to protect the environment and manage resources more wisely. Traditionally, this industry has 

had a considerable environmental impact through activities like quarrying for concrete 

aggregates, which disrupts habitats and contribute to pollution. As highlighted by (Cantero et 

al., 2020), current research is increasingly focused on sustainable materials, with Recycled 

Aggregate Concrete (RAC) playing a central role (Pani et al., 2020)(Pani et al., 2020)(Pani et 

al., 2020)(Pani et al., 2020). RAC, which repurposes debris from construction and demolition, 

reduces the demand for new aggregates and minimizes waste. 

However, RAC presents challenges due to the variability in recycled aggregates, 

particularly regarding their water absorption and mass, which are influenced by the mortar 

attached to the aggregates (NAOUAOUI et al., 2019)(NAOUAOUI et al., 2019)(NAOUAOUI 

et al., 2019)(NAOUAOUI et al., 2019). This variability leads to a weaker transition zone 

between the mortar and aggregates, resulting in a higher water-to-cement ratio and a sub-

sequent decrease in the overall strength of the concrete (Chen et al., 2022; Khatab & Altmami, 
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2019)(Chen et al., 2022; Khatab & Altmami, 2019)(Chen et al., 2022; Khatab & Altmami, 

2019)(Chen et al., 2022; Khatab & Altmami, 2019). These challenges are particularly 

pronounced in prestressed segmental bridges, where the mechanical prop-erties of RAC are 

critical, especially in the shear keys that connect the bridge segments. 

Recent advancements have shown that innovative RAC mixtures, such as those using 

coarse recycled aggregates from electric arc furnace slags, can achieve similar compressive and 

tensile strengths to conventional concrete, making RAC a viable alternative for sustainable 

construction (Tamayo et al., 2019)(Tamayo et al., 2019)(Tamayo et al., 2019)(Tamayo et al., 

2019). Moreover, treatment methods like carbonation or acetic acid immersion have been 

shown to enhance RAC's mechanical behavior, improving tensile and flexural strength (Kazmi 

et al., 2019)(Kazmi et al., 2019)(Kazmi et al., 2019)(Kazmi et al., 2019). 

Durability is another crucial factor, especially under conditions like freeze-thaw and 

wet-dry cycles, which can significantly affect the longevity of structures like prestressed 

segmental bridges (Rangel et al., 2021)(Rangel et al., 2021)(Rangel et al., 2021)(Rangel et al., 

2021). Despite these advancements, there is limited research on the performance of RAC in 

critical structural applications, particularly in the dry joints of prestressed segmental bridges, 

where shear strength is a primary concern. 

While conventional predictive models for joint strength, such as those proposed by 

(Fonteboa et al., 2010) and (Xiao et al., 2012), have been developed for natural aggregate 

concrete, these models do not accurately reflect the behavior of RAC, which typically exhibits 

lower shear strength. This study aims to fill this gap by evaluating the performance of RAC in 

prestressed segmental bridge joints and developing a predictive model tailored to its unique 

properties. 

Machine learning (ML) techniques, including Linear Regression and Random Forest, 

are employed to analyze the experimental data, providing a more accurate understanding of 

RAC's behavior in these critical applications. (Han et al., 2020) discuss an ensemble ML model 

for predicting the modulus of elasticity, showing higher accuracy than standalone models. 

Similarly, (Deng et al., 2018) use deep learning for compressive strength prediction, 

emphasizing efficiency and precision. (Zafar et al., 2020) highlight the effectiveness of the 

relevance vector machine (RVM) algorithm in predicting RAC strength. 

This study employs ML to analyze experimental data, uncovering patterns that 

traditional statistics might miss. Linear Regression and Random Forest models are used to 

predict how factors like key area, smooth area, and confinement stress affect RAC's load 
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capacity. The Random Forest model, in particular, excels at handling complex, nonlinear 

relationships, providing insights into the most critical factors for RAC strength and durability. 

These findings contribute to developing a novel predictive model for RAC in prestressed 

segmental bridges. Shaped by empirical evidence and ML insights, this model offers a more 

accurate and reliable tool for designing and evaluating RAC in essential structural applications. 

The forthcoming sections will detail the new equation derived from this analysis, which is 

expected to significantly impact the field. 

Previous studies, such as those by (Rahal, 2017) and (B. Liu et al., 2019a), consistently 

report decreased shear strength with increased recycled aggregate content. Trindade et al. 

(2020) further examine how steel fibers can mitigate this loss, though RAC still exhibits lower 

strength compared to conventional concrete. 

This research explores RAC's use in prestressed segmented bridges, focusing on dry 

joints entirely made of RAC. By examining 27 specimens under varying conditions, this study 

contextualizes RAC's performance and advances the understanding of its application in 

structural engineering through the integration of advanced data analytics. 

 

8.2.2 Materials 

In the production of concrete for this study, Brazilian cement type CPII-E-32 was used 

as the primary binder. This cement, adhering to (ABNT NBR 11578:1991, 1991)(ABNT NBR 

11578:1991, 1991) standards, is a Portland cement enriched with granulated blast furnace slag, 

boasting a minimum 28-day compressive strength of 32 MPa. 

The concrete compressive strength tests were conducted in accordance with the (ABNT 

NBR 5739, 2018a) standard, which prescribes the use of cylindrical specimens due to their 

widespread acceptance in representing concrete behavior under compression. 

The selection of fine aggregate was natural quartz sand, sourced from the Paraíba do 

Sul River in Campos dos Goytacazes, RJ. This sand was characterized by a specific mass of 

2.63 g/cm³ and a unit mass of 1.54 g/cm³ in its loose and dry state, as specified by (ABNT NBR 

NM 52, 2003)(ABNT NBR NM 52, 2003). 

For the coarse aggregates, a recycling approach was adopted. These were produced by 

crushing waste materials from specimens utilized in earlier research, where the original 

concrete exhibited a compressive strength ranging between 50 and 70 MPa. The process of 
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manufacturing these recycled coarse aggregates is depicted in Figure 8.2.1, and detailed 

characteristics of these aggregates are provided in Table 8.2.1. 

 

 

Figure 8.2.1 - Scheme for the production of recycled coarse aggregates (Sousa et al., 2023)(Sousa 
et al., 2023). 

 

Table 8.2.1 - Physical characteristics of recycled coarse aggregates. 
Specific mass 
(g/cm³) (ABNT 
NBR NM 53, 
2002)(ABNT 
NBR NM 53, 

2002) 

Water absorption 
(%) (ABNT NBR 

NM 53, 
2002)(ABNT NBR 

NM 53, 2002) 

Abrasion Micro-Deval 
(%) (EN 1097-1:2011, 

2011)(EN 1097-1:2011, 
2011) 

Adhered mortar  
(%) (Adapted from 

(Bazuco, 1999)(Bazuco, 
1999)) 

2.31 5.55 13.97 40.0 

8.2.2.1 Concrete proportioning 

The concrete mix was designed to achieve a target compressive strength of 30 MPa at 

28 days. The specific material quantities used in the mix are detailed in Table 2. 

 

Table 8.2.2 - Concrete mixing ratios. 
Material Quantities/m³ 

Portland Cement CP2-E-32 513.59 kg 
Fine aggregate 735.85 kg 
Recycled coarse aggregate 904 kg 
Water 236.25 l 
w/c 0.46 
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The 28-day compressive strength was measured using cylindrical samples, each with a 

diameter of 100 mm and height of 200 mm. For this study, the concrete was formulated with a 

complete replacement (100%) of coarse aggregates by recycled aggregates, while fine 

aggregates were not replaced. The recycled aggregates were prepared from construction and 

demolition waste, with the waste materials being approximately 5 to 6 years old. The properties 

of the recycled aggregate concrete (RAC) utilized in the production of the dry joint specimens 

are outlined in Table 8.2.3. 

 

Table 8.2.3 - Physics and mechanical characteristics of recycled coarse aggregate concrete. 

RAC Properties Values 
Standard 
Deviation 

Coefficient of 
variation (%) 

Compressive strength (ABNT NBR 5739, 
2018)(ABNT NBR 5739, 2018) 

41.52 MPa 6.00 MPa 14.45 

Tensile strength (ABNT NBR 7222, 
2011)(ABNT NBR 7222, 2011) 

2.71 MPa 0.21 MPa 7.75 

Modulus of Elasticity (ABNT NBR 8522, 
2017)(ABNT NBR 8522, 2017) 

34.65 GPa 5.34 GPa 15.41 

Density (ABNT NBR 9778, 2009)(ABNT 
NBR 9778, 2009) 

2450 kg/m³ 20 kg/m³ 0.82 

Water absorption (ABNT NBR 9778, 
2009)(ABNT NBR 9778, 2009) 

7.38 % 0.63 % 8.54 

8.2.2.2 Details of specimens 

Push-off test specimens, designed to study the shear behavior of dry joints with recycled 

coarse aggregate concrete, were produced in a manner consistent with the approaches used by 

other researchers (Buyukozturk et al., 1990a; Feng et al., 2020a; Jiang et al., 2015a, 2019a; T. 

Liu et al., 2019a; Yang et al., 2013a; Zhou et al., 2005a)(Buyukozturk et al., 1990a; Feng et al., 

2020a; Jiang et al., 2015a, 2019a; T. Liu et al., 2019a; Yang et al., 2013a; Zhou et al., 2005a). 

The dimensions and configurations for the flat, single-keyed, and three-keyed dry joint 

specimens utilized in our experiments are illustrated in Figure 8.2.2. 
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Figure 8.2.2 - Dimensions and geometry of the dry joint specimens (units in cm) (Sousa et al., 
2023) 

 

A total of twenty-seven dry joint specimens were fabricated, with the derived results 

being the average of three specimens for each type. Each specimen had a uniform width of 100 

mm. To ensure shear-controlled failure in the keys, reinforcements with a 12 mm diameter were 

incorporated. The shear plane area of the flat and single-keyed dry joint specimens was 30000 

mm², while for the three-keyed specimens, it was 50000 mm². 

Details of the dry joint specimens are presented in Table 8.2.4. The adopted 

nomenclature for the specimens is 'CPR – J – T', where 'CPR' denotes a dry joint specimen 

made with recycled coarse aggregate concrete, 'J' indicates the joint type (L for Flat, 1 for single-

keyed, 3 for three-keyed), and 'T' specifies the applied confining stress (1.0, 2.0, or 3.0 MPa). 

For instance, the specimen labeled 'CPR2-1-3.0' refers to the second flat joint specimen, single-

keyed, subjected to a confining stress of 3.0 MPa. All specimens surfaces were ground using 

identical procedures to ensure uniformity in surface roughness, which was important for 

consistent shear testing. 
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Table 8.2.4 - Summary of the experimental program. 
Specimen Joint type Shear area (mm²) Confining stress (MPa) 
CPR-L-1.0 

Flat 30000 
1.0 

CPR-L-2.0 2.0 
CPR-L-3.0 3.0 
CPR-1-1.0 

Single-keyed 30000 
1.0 

CPR-1-2.0 2.0 
CPR-1-3.0 3.0 
CPR-3-1.0 

Three-keyed 50000 
1.0 

CPR-3-2.0 2.0 
CPR-3-3.0 3.0 

8.2.3 Setup and instrumentation 

The confining stress levels of 1.0, 2.0, and 3.0 MPa were selected based on their frequent 

use in studies addressing dry joints (Alcalde et al., 2013b; Jiang et al., 2015a, 2019a; Kassem 

et al., 2017; Shamass et al., 2015, 2017; Yang et al., 2013a; Zhou et al., 2005a). This confining 

stress simulates the pressure in the joints generated by the prestressing of the bridge segments.  

The push-off rupture tests were conducted using a metallic gantry framework and a 

model 244.41 hydraulic actuator, linked to an MTS® load cell with a 500 kN capacity. These 

tests were performed under controlled deformation at a rate of 1 mm/min. The hydraulic unit 

not only controlled the deformation speed but also recorded the applied load in real-time. 

The specimens' confining stress (n) was applied by a system of bars, nuts, and steel 

plates. The plates had dimensions of 200x300x20 mm and 200x500x20 mm. Applied 

compressive forces due to reaction forces derived from the bars (F). 2re 10.a presents the 

scheme for applying forces and generating the confining stress in the confinement system. 
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Figure 8.2.3 - a) schematic of the confinement system, b) schematic of the reaction forces, c) steel 
bars instrumented to generate the reaction force on the plates, d) metal plates used to apply the 

confinement stress and e) nuts used to deform the steel bars. 
 

Reaction forces were induced by applying deformations to the steel reinforcement bars. 

These rebars were instrumented with BX120-3AA strain gauges (Figure 8.2.3.c) and monitored 

in real-time during the tightening of the nuts. To ensure a uniform distribution of stress across 

the specimens, the plates were drilled to allow the bars to pass through (Figure 8.2.3.b). 

Additionally, steel rollers were positioned between the adhered plates on the vertically sliding 

side to facilitate their vertical movement. 

 The end test criteria established was that the relative slip between the two parts of the 

specimen should reach 5 mm for smooth joints and 10 mm for keyed joints. This approach 

enabled the analysis of residual stress in the joint post-failure, which occurred at approximately 

10% to 20% of the specified slip. 

Applied stresses for the tests were set at 1.0, 2.0, and 3.0 MPa. Table 8.2.7 details the 

strains needed in the bars to induce the corresponding reaction forces on the plates, for 

specimens with shear areas of 30000 mm² and 50000 mm². Table 8.2.5 illustrates the required 

deformation in the threaded bars to achieve specific confining stress levels. The values were 

calculated based on the relationship between bar deformation and the applied reaction forces 

necessary to induce the desired confining stress across the shear plane of the specimens. 

 

Table 8.2.5 - Summary of the experimental program. 
Confinement stress  

(MPa) 
Deformation in the bar 

() 
Reaction force  

(kN) 
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1.0 114.71 / 191.18 7.50 / 12.5 
2.0 229.41 / 382.35 15.0 / 25.0 
3.0 344.12 / 573.53 22.5 / 37.5 

 

The primary input parameters for this study included joint type (flat, single-keyed, three-

keyed), applied con-fining stress (1.0, 2.0, 3.0 MPa), and specific concrete properties such as 

compressive strength and tensile strength. These parameters were selected based on their 

relevance to the shear performance of RAC in prestressed segmental bridges. 

For testing purposes, the distinguishable parameters included the joint configuration and 

the level of confining stress applied during testing. These parameters were selected because 

they directly impact the shear strength and failure mode of the RAC joints. By systematically 

varying these parameters, the study aimed to isolate their effects on the overall structural 

performance of RAC. 

The experimental setup was arranged as follows: Specimens were placed in a fixed 

position within a metallic frame designed to simulate in-situ conditions. A hydraulic actuator 

applied a controlled load to the top of the specimen, while confining stress was applied laterally 

using steel plates and bars. Strain gauges and displacement sensors were positioned at critical 

points to measure deformation and load response. Figure 8.2.4 provides a schematic 

representation of the test setup, highlighting the arrangement of these elements. 

 

 

Figure 8.2.4 - Schematic Representation of Experimental Setup for Testing RAC Dry Joints. 
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The test was concluded upon reaching the failure load, defined as the point where a 

significant drop in load-bearing capacity was observed, indicating the onset of shear failure in 

the joint. The two sets of deformation and reaction force values presented in Table 8.2.5 

correspond to the specimens with surface areas of 30,000 mm² and 50,000 mm², respectively 

8.2.3.1 Machine learning analysis 

In this study, a machine learning (ML) technique was employed to enhance the 

predictive accuracy of models estimating the shear strength of Recycled Aggregate Concrete 

(RAC) dry joints. The inherent variability in recycled materials presents challenges for 

traditional analytical methods, but ML excels in identifying patterns and relationships that 

might not be immediately apparent. 

Several ML techniques were considered, with a focus on those capable of managing 

nonlinear relationships between input variables, such as joint type, confining stress, and 

concrete properties relating their impact on shear strength. The Random Forest algorithm was 

ultimately selected for its robustness and ability to handle complex data. As an ensemble 

learning method, Random Forest constructs multiple decision trees and combines their outputs 

to improve predictive performance and minimize overfitting. 

In this study, the Random Forest algorithm was selected due to its capability to handle 

complex and nonlinear relationships within the dataset, making it particularly suitable for 

predicting shear strength in Recycled Aggregate Concrete (RAC) dry joints. The algorithm’s 

ensemble nature, which combines the predictions of multiple decision trees, enhances accuracy 

and reduces the risk of overfitting, especially when dealing with the variability inherent in 

recycled materials. 

The Random Forest model was trained using the experimental data collected from tests 

on RAC dry joints. The input variables included joint type (flat, single-keyed, three-keyed), 

applied confining stress (1.0, 2.0, and 3.0 MPa), and concrete properties (compressive strength, 

tensile strength, and modulus of elasticity). During the training phase, the model analyzed these 

inputs to understand their relationship with the observed shear strength outcomes. 

The model's predictions were validated against the experimental results to assess its 

accuracy and robustness. This validation process involved comparing the predicted shear 

strengths with the actual measured values, demonstrating that the Random Forest model 

provided highly accurate predictions. Additionally, the algorithm identified the most influential 
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factors affecting the shear strength of RAC dry joints, offering valuable insights into the 

behavior of these materials under different conditions. 

By incorporating the Random Forest algorithm into the analysis, this study was able to 

capture the complex interactions among the various input variables, leading to more a precise 

predictions than traditional linear models could offer as presented at the results section. 

8.2.3.2 Exploratory data analysis 

The Exploratory Data Analysis (EDA) was a critical phase where the dataset was 

analyzed to uncover patterns and relationships within Recycled Aggregate Concrete (RAC) dry 

joints. The process began with data preprocessing, which involved cleaning and normalizing 

the data to ensure its quality for in-depth analysis. We then moved on to descriptive statistics, 

calculating measures like mean, standard deviation, and range to get a basic understanding of 

the data's tendencies and variability. 

A key part of our EDA was correlation analysis, using Pearson correlation coefficients 

to explore the strength and direction of relationships between variables. This helped to identify 

which factors were most strongly associated with the shear strength of RAC dry joints. To 

visually interpret these relationships and distributions, we employed some graphical techniques, 

including histograms, box plots, scatter plots, and heatmaps. These visualizations were 

instrumental in revealing distribution patterns, outliers, and correlations in an intuitive manner. 
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Figure 8.2.5 - (a) Importance analysis and (b) heatmap analysis. 
 

Two main variables, A and B, were constructed to capture the combined effects of joint 

configuration and con-fining stress on shear strength. Although these variables are not entirely 

independent, their construction allows for the nuanced analysis of how these factors interact 

within the context of the experimental design. Making variables A and B not fully independent 

reflects the interactions between joint configuration and confining stress in RAC dry joints. 

Their interdependence allowed a more accurate modeling of how these factors influence shear 

strength, capturing the complex, interconnected behavior of the system. This approach leaded 

to more precise predictions. 
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Where Variable A is feature that multiplies the formula (𝐴𝑘 ∗  ඥ𝑓𝑐  ∗  (0.9961 +

 0.2048 ∗  𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡)) and Variable B being the factor that multiplies (0.6 ∗  𝐴𝑠 ∗

 𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡) as will be presented in section 2.8. 

The EDA provided valuable insights into the nature and behavior of RAC, guiding the 

development of the predictive models and highlighting areas for future research. It was an 

essential step in the present study, enabling a comprehensive understanding of the complex 

characteristics of RAC data gathered. 

8.2.3.3 Development of a Modified Equation for Recycled Concrete Dry Joints 

This section introduces the equations used for predicting dry joint strength, compiled in 

Table 8.2.1, alongside the relevant designations and notations, which are elucidated in Table 

8.2.2. This sets the stage for a detailed discussion on the potential of RAC, driving the 

investigation towards filling the current knowledge gap with rigorous analysis and novel 

insights. 

Table 8.2.6 provides a selection of principal equations from the literature for predicting 

the shear strength of dry joints. These equations represent a range of analytical and empirical 

approaches, reflecting diverse methodologies from fundamental mechanics to advanced data-

informed models. Each entry in the table. 

 

Table 8.2.6 - Key Equations for Predicting Shear Strength of Dry Joints. 
Author/Standard Equation 

(AASHTO, 1999a)(AASHTO, 
1999a) 𝑉௨ = 𝐴ඥ𝑓(0.9961 + 0.2048𝜎) + 0.6𝐴௦𝜎 

(1) 

(ATEP, 1996a)(ATEP, 1996a) 𝑉௨ = 𝐴(1.14𝜎 + 0.0564𝑓ௗ) (2) 
(EUROCODE 2, 
2004a)(EUROCODE 2, 2004a) 

𝑉௨ = 𝐴(0.5𝑓௧ௗ + 0.9𝜎) (3) 

(Buyukozturk et al., 
1990b)(Buyukozturk et al., 1990b) 𝑉௨ = 𝐴(0.647ඥ𝑓 + 1.36𝜎) 

(4) 

(Rombach & Specker, 
2002a)(Rombach & Specker, 
2002a) 

𝑉௨ = 0.65𝜎𝐴 + 𝑓𝑓𝐴 
(5) 

(Turmo et al., 2006a)(Turmo et al., 
2006a) 𝑉௨ = 𝐴0.01 ට𝑓²

య
(7𝜎 + 33) + 0.6𝐴௦𝜎 

(6) 

(Alcalde et al., 2013a)(Alcalde et 
al., 2013a) 𝑉௨ = 7.118𝐴(1 − 0.064𝑁) + 2.436𝐴௦𝜎(1 + 0.127𝑁) 

(7) 

(Ahmed & Aziz, 2019)(Ahmed & 
Aziz, 2019) 𝑉௨ = 0.6𝜎𝐴௦ + (1.06𝐴 + 2100𝜎)ඥ𝑓 

(8) 
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Table 8.2.7 - Notation used in the equations in Table 8.2.1. 
Variable Notation Description 

Design Parameters 𝑉௨ Maximum shear force (kN) 
 𝜎 Confining Stress (MPa) 
 𝑓 Characteristic compressive strength of concrete (MPa) 
 𝑓 Concrete compressive strength (MPa) 
 𝑓ௗ Design concrete compressive strength (MPa) 
 𝑓௧ௗ Concrete tensile strength (MPa) 

Geometric characteristics 𝐴 Total joint area (mm²) 
 𝐴 Area relative to the joint keys (mm²) 
 𝐴௦ Area related to the flat part of the joint (mm²) 
 𝑁 Number of keys 
 𝑓 The factor relating to the key’s cutout equal to 0.14 

 

Notably, (AASHTO, 1999a) (AASHTO, 1999a), the most applied equation in this 

context tends to yield results that are higher than those observed in actual tests. This discrepancy 

highlights a significant risk in directly applying this equation to recycled concrete dry joints, as 

it may lead to an overestimation of shear strength and potentially compromise the safety and 

integrity of the structure. Therefore, caution and additional research are advised when 

considering these equations for recycled concrete applications. 

To address this issue, we propose a new equation introducing a reduction factor to 

modify the (AASHTO, 1999b) (AASHTO, 1999b) equation. This adjustment aims to better 

align the equation's predictions with the specific characteristics and performance of recycled 

concrete in dry joint applications, ensuring a more accurate and safe assessment of shear 

strength. 

To understand the data patterns, machine learning techniques were used. Two models, 

Linear Regression and Random Forest, were employed, each providing insights due to their 

inherent characteristics. 

Linear Regression, a parametric approach, offered a direct relationship between the 

predictors and the response variable. Its simplicity allowed for the clear identification of the 

influence each predictor exerted on the ultimate load capacity. This was quantified through the 

regression coefficients, which directly indicated the expected change in load capacity with a 

unit change in the predictor variables. 

On the other hand, the Random Forest model, a non-parametric ensemble technique, 

harnessed the power of multiple decision trees to capture non-linear relationships and 

interactions between variables that the linear model might miss. It provided a more nuanced 

understanding through its feature importance scores, which ranked the predictors based on their 

contribution to model accuracy. 
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The Random Forest model's superior R-squared value highlighted its effectiveness in 

modeling complex and potentially non-linear relationships within the dataset. The feature 

importance scores further emphasized the dominance of the variable A over B in determining 

the ultimate load capacity, a revelation that could guide more focused engineering practices. 

 

These machine learning techniques, with their distinct yet complementary analytical 

capabilities, contributed significantly to the robust analysis of the dataset, uncovering data 

patterns that are crucial for accurate load capacity prediction in recycled concrete applications. 

The data analysis was conducted on the properties of recycled concrete used for 

reinforced bridge structures. Descriptive statistics indicated a mean concrete resistance (fc) of 

41.52 MPa, with key and smooth area averages of 20,000 mm². The dataset exhibited a standard 

deviation of 4.71 MPa in concrete resistance, suggesting moderate variability. The correlation 

matrix revealed a strong positive relationship (r = 0.982) between the variable A—defined as 

𝐴𝑘 ∗ ඥ𝑓𝑐 ∗ (0.9961 + 0.2048 ∗ 𝜎𝑛) and the ultimate load capacity Vu (kN), underpinning the 

variable's significance in load prediction. 

Subsequently, machine learning techniques were applied to further elucidate the data 

patterns. The Random Forest model demonstrated a high feature importance score of 0.968 for 

variable A and a lower score of 0.032 for B—calculated as 0.6 ∗ 𝐴𝑠 ∗ 𝜎𝑛, highlighting the 

former's predictive power. The proposed model achieved high R-squared values of 0.979, 

indicating a robust fit to the observed data. 
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The machine learning analysis led to the refinement of the equation for predicting the 

ultimate load capacity. The revised equation, as derived from the regression model, was 

determined to be: 

𝑉𝑢(𝑘𝑁) = ቀ𝐴𝑘 ∗ ඥ𝑓𝑐 ∗ (0.9961 + 0.2048 ∗ 𝜎𝑛)ቁ × 0.7596

+ (0.6 ∗ 𝐴𝑠 ∗ 𝜎𝑛) × 0.6516      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

Where the reduction factors are defined, and the coefficients 0. 7596and 0. 6516 

represent the factors by which each part of the equation should be multiplied. This equation, 

alongside the insights from the Random Forest model, offers an accurate method for estimating 

the load capacity of structures utilizing recycled concrete, considering their unique 

characteristics. 

8.2.4 Results and Discussion 

8.2.4.1 Shear strength of RAC dry joints 

Three types of dry joint specimens—flat, single-keyed, and three-keyed—were 

evaluated under confining stress-es of 1.0, 2.0, and 3.0 MPa. For flat dry joints, a linear increase 

in normalized shear stress (τn) against relative vertical displacement was observed.  

The failure patterns observed in the Recycled Aggregate Concrete (RAC) dry joints 

under varying confining stresses were analyzed to understand the structural behavior of 

different joint configurations. Figure 8.2.6 present the typical cracking and failure patterns 

observed in the joints for different ultimate loads. 

 

Figure 8.2.6 – (a) Importance analysis and (b) heatmap analysis. 
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Figure 8.2.6 presents the cracking patterns observed in Recycled Aggregate Concrete 

(RAC) dry joints at four different stages of ultimate shear: 0, 0.65, 0.95, and 1.0 of the ultimate 

shear capacity. These images illustrate the progression of crack development as the applied 

shear stress increases. 

At 0 Vu (ultimate shear), the specimen shows no visible cracking, indicating the initial, 

unstrained state of the joint. At 0.65 of ultimate shear, initial cracks begin to form, primarily 

along the base of the key. These cracks indicate the onset of structural distress within the joint. 

At 0.95 of ultimate shear, the cracks become more pronounced and extensive, spreading through 

the joint and indicating significant stress concentration areas where the force attempts to shear 

the key off. The propagation of these cracks suggests an imminent failure. At 1.0 of ultimate 

shear (bottom-right), the cracks have fully developed to connect the entire key, leading to a 

complete failure of the joint. The pattern of cracking at this stage reflects the joint's maximum 

load-bearing capacity before collapse.  

The behavior indicated no significant damage to the shear plane, just a thin layer of dust 

from friction. In single-keyed dry joints, increased confining stress resulted in higher 

normalized shear stress, with a pattern of linear increase until the key's strength limit, followed 

by significant slip and load decrease (Figure 8.2.7). The three-keyed joints exhibited a similar 

initial linear increase in stress, but with a noticeable incline near rupture, suggesting higher 

ductility due to sequential key ruptures. This behavior aligns with observations in previous re-

search and confirms that higher confining stress improves joint strength across all types 

(Alcalde et al., 2013b; Jiang et al., 2015a; T. Liu et al., 2019a; Zhou et al., 2005a). 

   

(a)                                              (b) 
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                          (c) 

Figure 8.2.7 – Normalized shear stress versus relative vertical displacement curves for (a) flat, 
(b) single-keyed, (c) three-keyed RAC dry joint specimens. 

 

The failure load, maximum shear stress, normalized cracking shear stress, and 

maximum normalized shear stress at failure of the flat dry joints, single-keyed and three-keyed 

dry joints are in Table 8.2.8. 

 

Table 8.2.8 - Notation used in the equations in Table 8.2.1. 

Specimens 
Failure load Vu  

(kN) 

Maximum 
shear stress 

τu  
(MPa) 

Normalized 
cracking shear 

stress τnf 
(MPa0.5) 

Maximum 
normalized 

shear stress τun  
(MPa0.5) 

Standard 
deviation 

(MPa) 

CPR-L-1.0 16.98 0.57 - 0.09 0.01 
CPR-L-2.0 32.01 1.07 - 0.17 0.02 
CPR-L-3.0 45.31 1.51 - 0.23 0.02 
CPR-1-1.0 86.18 2.87 0.20 0.45 0.03 
CPR-1-2.0 104.89 3.50 0.28 0.52 0.01 
CPR-1-3.0 115.11 3.84 0.35 0.60 0.01 
CPR-3-1.0 180.34 3.61 0.45 0.56 0.03 
CPR-3-2.0 228.89 4.58 0.62 0.68 0.04 
CPR-3-3.0 256.60 5.13 0.72 0.80 0.07 

 

The results showed that the dry joints of concrete with recycled coarse aggregates 

presented reduced shear strength values compared to conventional concrete (except the three-

keyed joint submitted to confining stress of 1.0 MPa). This shows the brittle characteristic of 

this material to shear.  

The lower resistance of RAC occurs because the recycled coarse aggregates have lower 

resistance than the conventional ones due to the percentage of adhered mortar. This 

characteristic contributes to the cracks to cut the re-cycled aggregates, reducing the mechanical 

interlock due to the reduction of roughness in the sliding surface, thus interfering with the shear 

strength of the joint (Xiao et al., 2016) 
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8.2.4.2 Comparison between the results of this research with those of other researchers 

Much research about the shear resistance of conventional or high strength dry concrete 

joints have been studied in recent years. Table 8.2.9 gathers information about them. 

 

Table 8.2.9 - Dry joints specimens’ data from previous works. 

Paper Joint type 

Concrete 
strength 

resistance 
(MPa) 

Joint 
width 
(mm) 

Total 
smooth 

joint 
area 

(mm²) 

Total 
monolithic 
joint area 

(mm²) 

Total 
joint 
area 

(mm²) 

(Buyukozturk et al., 
1990b)(Buyukozturk 

et al., 1990b) 

Flat 47.37 76.2 5806.44 - 5806.44 
Single-
keyed 

47.37 76.2 3992,9 7620 11612.9 

(Zhou et al., 2005b) 

Flat 52.2-52.8 250 50000 - 50000 
Single-
keyed 

37.1-56.2 250 25000 25000 50000 

Three-
keyed 

30.2-63.7 250 50000 75000 125000 

(Yang et al., 2013b) 
Single-
keyed 

60 100 10000 7000 17000 

(Jiang et al., 2015b) 

Flat 40.49 100 20000 - 20000 
Single-
keyed 

41.51 100 10000 10000 20000 

Three-
keyed 

41.82 100 20000 30000 50000 

(Jiang et al., 2019b) 
Single-
keyed 

41.03 100 10000 10000 20000 

(T. Liu et al., 2019b) 

Flat 123.9-125.59 150 45000 - 45000 
Single-
keyed 

123.9-125.59 150 30000 15000 45000 

Three-
keyed 

123.6-124.66 150 30000 45000 75000 

(Feng et al., 2020b) 
Single-
keyed 

64.21 100 10000 10000 20000 

 Flat 41.52 (RAC) 100 30000 - 30000 

(Sousa et al., 2023) 
Single-
keyed 

41.52 (RAC) 100 20000 10000 30000 

 
Three-
keyed 

41.52 (RAC) 100 20000 30000 50000 

 

Figure 8.2.8 compare the maximum normalized shear stress versus confining stress 

obtained by other researchers and the experimental results of this research for flat, single-keyed, 

e three-keyed dry joints with recycled coarse aggregates concrete. 
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Figure 8.2.8 – Maximum normalized shear stress in a) flat, b) single-keyed and c) three-keyed 
dry joints obtained for specimens from ordinary (black lines) and RAC (blue line). 
 

Our results align with (Jiang et al., 2015a), who also observed reduced shear strength in 

RAC joints compared to conventional concrete. However, the ductility observed in three-keyed 

joints suggests a potential for RAC in specific applications, despite its lower strength. 

For flat joints, the results showed that dry joints of concrete with recycled coarse 

aggregates showed strengths close to those of conventional concrete. The shear plane area of 

smooth joints has been observed to vary between studies; however, Figure 8.2.8 reveals that 

this has had minimal effect on the comparison of results, as values have remained consistent 

between both types of concrete. 

The results showed that the single-keyed dry joints with recycled coarse aggregates 

concrete presented the lowest maximum normalized shear stress values. The comparison of the 

results obtained from the key joints with those of the smooth joints, as seen in Figure 8.2.9, 

demonstrates a greater difference. This implies that the monolithic region of the key exhibits 

an increased contribution to the shear resistance of the joints, with the RCA concrete joints 

exhibiting the lowest values due to its lower resistance. In the three-keyed joints, the difference 

between the results was minor compared to the single-keyed joints, presenting even similar 

values, studies have found that in multi-key joints, the rupture sequence of the keys does not 

allow for the full resistance of all of the keys together, which results in values obtained from a 

break that are not equal to three times the values of single-key joints. This rupture sequence of 

the keys, however, does allow for RCA joints to reach values close to those of conventional 

concrete joints. 

8.2.4.3 Equations for predicting the strength of RAC dry joints 

Utilizing Equations presented in Table 8.2.6 to predict the shear strength (τun) of 

Recycled Aggregate Concrete (RAC) dry joints does not align accurately with our study's 
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findings. This misalignment underlines a significant gap between existing theoretical models 

and the empirical data collected, especially in the context of RAC dry joints. Our research 

indicates the need for a revised predictive approach that accurately reflects the unique 

characteristics and behavior of RAC in these applications. 

Our study's comparative analysis involved findings from (Turmo et al., 2006b), 

(Rombach & Specker, 2002b), and the standards set in (EUROCODE 2, 2004b), with a specific 

focus on three-keyed RAC dry joints as reported by (Turmo et al., 2006b) and as outlined in 

(EUROCODE 2, 2004b). This comparison aimed to understand the discrepancies and align our 

findings within the broader context of existing literature and established codes. 

Figure 8.2.9 illustrates the experimental results and the prediction of maximum 

normalized shear stress of single-keyed RAC dry joints using the equations from the literature. 

The (EUROCODE 2, 2004b) equation, formulated for calculating the shear resistance between 

concrete surfaces produced at different times, was observed to yield conservative values 

compared to the equations of (Turmo et al., 2006b) and (Rombach & Specker, 2002b), which 

were developed specifically for calculating the resistance of dry joints. 

 

Figure 8.2.9 – Experimental results and prediction of maximum normalized shear stress of the 
single-keyed and three-keyed RAC dry joints using the equations in the literature and the 

proposed. 
 

Table 8.2.11 details the relationship between the τun predicted by existing equations 

and our experimental results. The table demonstrates that the other proposed equations do not 

favor safety when applied to our data. For in-stance, the normative equation of (AASHTO, 

1999b) approximates the strength of single-keyed RAC dry joints for low confining stresses. 

However, as the confining stress increases, the experimental results significantly diverge from 

the predictions, as evident in Figure 8.2.9. Particularly, the experimental values for predicting 

RAC dry joints with three keys differ markedly from the normative equation's prediction. 
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Table 8.2.9 - Relationship between maximum normalized shear stress predicted by the literature 
equations and experimental results. 

Specimens 
AASHTO 

1 
ATEP 2 EUR 3 BUYU 4 

ROMB 
5 

TURM 
6 

ALCA 7 
AHMD 

8 
Equation 1 

CPR-1-1,0 1.04 1.21 0.75 1.92 0.90 0.70 1.41 1.09 0,77 
CPR-1-2,0 1.09 1.32 0.88 1.97 0.93 0.77 1.68 1.14 0,81 
CPR-1-3,0 1.21 1.50 1.03 2.15 1.01 0.88 2.01 1.26 0,89 
CPR-3-1,0 1.35 0.97 0.60 1.53 1.15 0.86 1.33 1.28 1,02 
CPR-3-2,0 1.29 1.01 0.67 1.50 1.05 0.84 1.34 1.12 0,97 
CPR-3-3,0 1.35 1.12 0.77 1.61 1.06 0.90 1.46 1.10 1,01 

1 (AASHTO, 1999c); 2 (ATEP, 1996b); 3 (EUROCODE 2, 2004a); 4 (Buyukozturk et 

al., 1990b); 5 (Rombach & Specker, 2002c); 6 (Turmo et al., 2006c); 7 (Alcalde et al., 

2013c); 8 (Ahmed & Aziz, 2019). 

 

To address these discrepancies and provide a more accurate representation of the 

observed phenomena, we developed Equation 1, as presented in section 2 and showcased in 

Table 8.2.11. This new equation aligns more closely with the experimental data, ensuring a 

safer and more reliable approach to predicting the strength of RAC dry joints. 

As previously mentioned, the AASHTO equation was formulated for joints featuring 

only single key structures. It is inherent to the nature of the equation to extrapolate predictions 

to scenarios involving multiple keys. 

Consequently, Equation 1 was developed to address these specific discrepancies and 

provide a more accurate representation of the observed phenomena as may be seen in Table 

8.2.11. 

The model was derived through a combination of empirical data analysis and machine 

learning techniques. The key steps involved identifying the most influential variables through 

feature importance analysis using Random Forest, followed by fitting a regression model to 

predict the ultimate shear strength. The final equation was vali-dated against experimental data. 

8.2.5 Discussion 

This study provides insights into the behavior of Recycled Aggregate Concrete (RAC) 

dry joints, particularly in the context of prestressed segmental bridges. The findings show that 

flat joints in RAC exhibit behavior comparable to conventional concrete, suggesting that RAC 

can be a viable alternative in certain applications. However, the single-keyed and three-keyed 

joints, while demonstrating reduced shear strength with increased recycled aggregate content, 
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reveal distinctions. The improved ductility observed in the three-keyed joints suggests that 

certain design adaptations can mitigate some of the inherent brittleness associated with RAC, 

making it more suitable for specific structural applications where flexibility under load is 

advantageous. 

One of the findings of this study is the identification and subsequent modification of 

existing predictive models for concrete shear strength, such as the ASHTO equation. The 

observed discrepancies between the experimental results and the predictions made by these 

conventional models highlighted the need for adjustments to better capture RAC’s unique 

properties. By incorporating a reduction factor into the equation, it can enhance the accuracy of 

shear strength predictions for RAC, thereby providing a tool for engineers and designers 

working with this material. 

Moreover, the application of machine learning techniques, specifically Linear 

Regression and Random Forest provided a predictive modeling of RAC behavior. These 

methods allowed for a deeper analysis of the relationships between key variables and facilitated 

the development of a predictive model. The improved predictive accuracy achieved through 

these techniques sets the stage for further research into the broader applicability of these 

models. 

These findings suggest that while RAC can be used in prestressed segmental bridges, 

design adjustments, such as increased confining stress or key modifications, may be necessary 

to compensate for its lower shear strength. 

The results obtained suggest several pathways for future research. One limitation of this 

study is the focus on a specific range of confining stresses. Future research should explore a 

broader range of stresses and include long-term durability testing to fully assess RAC's potential 

in bridge construction. The refinement of the predictive models is also an ongoing process, and 

there is potential for further enhancement by incorporating additional variables and testing 

under different environmental conditions. Additionally, assessing the long-term performance 

of RAC, particularly in critical structural applications like prestressed segmental bridges, will 

be essential in validating its use and ensuring its durability and sustainability in the industry. 

8.2.6 Conclusions 

In this study, the use of Recycled Aggregate Concrete (RAC) in prestressed segmental 

bridges was investigated, with a focus on its mechanical properties, durability, and the 
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challenges associated with predicting joint strength in RAC structures. The findings indicate 

that while RAC may offers significant environmental benefits and can achieve strengths 

comparable to conventional concrete in certain contexts, its variability presents challenges, 

particularly in single-keyed dry joints, where it exhibits lower shear strength. These challenges 

are especially pronounced in the critical joint areas of prestressed segmental bridges, where 

RAC's inconsistent mechanical properties can significantly affect performance. This research 

enhances the understanding of RAC's behavior in these specific structural applications and 

underscores the need for specialized design and analysis approaches. 

The integration of machine learning techniques, especially the Random Forest model, 

was important in advancing the understanding of RAC for the proposed study. This approach 

provided insights into the complex data pat-terns, identifying key factors that influence the 

strength and durability of RAC in bridge applications. The development of a novel predictive 

equation for the load capacity of prestressed segmental bridges using RAC, represents an 

advancement in the equations proposed by the standard codes analyzed. The resulting model, 

which accounts for RAC's complex and varied properties, is expected to be a tool for researchers 

and practitioners in sustainable construction, enabling more precise and reliable design and 

evaluations. 

This study contributes to the ongoing shift towards sustainable construction practices 

by demonstrating both the potential and the challenges of using RAC in demanding structural 

applications. It lays the groundwork for further research into the applicability and performance 

of RAC, particularly as the construction industry moves towards adopting more 

environmentally friendly materials. 

8.2.7 DISCUSSION  of Chapter 8.2 

8.2.7.1 Key Findings 

The novel predictive model developed in this chapter proved to be highly effective in 

estimating the strength of RAC in bridge dry joints. The model accurately accounted for the 

variability in RAC properties, offering a robust method for predicting performance in real-

world applications. The findings suggest that RAC can perform comparably to traditional 

concrete when used in bridge dry joints, provided that appropriate design and material 

considerations are made. This predictive tool enables engineers to confidently use RAC in 

infrastructure projects, supporting both sustainability and structural integrity. 
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8.2.7.2 Implications 

The implications of this research are significant for the future of sustainable 

infrastructure. The ability to accurately predict the strength of RAC in critical structural 

applications, such as bridge dry joints, opens the door for wider adoption of recycled materials 

in large-scale projects. This contributes to the reduction of construction waste and promotes the 

use of sustainable resources without compromising safety. The predictive model could serve as 

a valuable tool in both the design and maintenance phases of bridge construction, ensuring that 

structures built with RAC meet the necessary performance standards while supporting 

environmental goals. 

8.2.7.3 Limitations 

While the predictive model demonstrated strong accuracy in this study, its effectiveness 

is dependent on the quality and consistency of the input data. Variations in recycled aggregate 

sources, processing methods, and mix designs could impact the generalizability of the model 

across different projects. Additionally, the model's applicability may be limited to the specific 

conditions under which it was developed, such as particular types of bridges and environmental 

conditions. Future work should aim to validate the model under a broader range of scenarios to 

ensure its robustness and versatility. 

8.2.7.4 Future Work 

Future research should focus on expanding the predictive model to account for a wider 

range of RAC properties and environmental conditions. Incorporating additional variables, such 

as long-term durability factors, freeze-thaw cycles, and exposure to aggressive environments, 

would enhance the model’s utility in diverse applications. Field validation through real-world 

bridge projects would provide critical data to refine the model and confirm its reliability. 

Additionally, exploring the model's adaptability to other structural elements, beyond bridge dry 

joints, could further increase the adoption of RAC in sustainable infrastructure development. 

8.2.8 CONCLUSION for Chapter 8.2 

This chapter developed and applied a novel predictive model for assessing the strength 

of recycled aggregate concrete (RAC) in bridge dry joints. The research demonstrated that the 
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predictive model was able to accurately forecast the performance of RAC dry joints, providing 

a reliable tool for engineers working with sustainable materials in bridge construction. The 

success of this approach highlights the potential for RAC to be used more widely in 

infrastructure projects, particularly where sustainability is a key concern. By offering accurate 

strength predictions, the model contributes to the confidence needed to incorporate recycled 

materials into critical structural applications like bridges. The successful application of 

predictive modeling in RAC provides a pathway for broader adoption of sustainable materials 

in structural design. Continuing with the theme of innovative materials, the final chapter 

examines the use of steel fibers in sand-lightweight concrete. 
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9 CONCLUSIONS 

This thesis has systematically explored the integration of predictive modeling 

techniques and empirical data into the structural design process, with the primary aim of 

enhancing the long-term performance of reinforced and prestressed concrete structures. The 

overarching goal was to address a gap in structural engineering: the limitations of traditional 

design methods that rely on static assumptions and deterministic models, which often fail to 

account for the dynamic factors affecting a structure's performance over time extremely 

complex nuances of the real-world case scenarios. This research has introduced methodologies 

that incorporate advanced optimization models and predictive tools, setting the stage for more 

resilient, adaptive, and efficient design practices in structural engineering. 

The specific objectives outlined in this thesis have been thoroughly investigated, 

resulting in significant contributions to the field. First, the development of a mathematical 

optimization model for the design and detailing of reinforced concrete, as discussed in Chapter 

4, marked an important shift from continuous to discrete optimization. This advancement 

allowed for the practical optimization of real-world reinforced concrete structures for the first 

time, opening new avenues for integrating machine learning techniques and data-driven 

solutions in structural design. The success of this model set the foundation for subsequent 

research, establishing a robust framework for addressing complex design challenges. 

Chapter 5 furthered this exploration by delving into the issue of stress corrosion cracking 

(SCC) in prestressed concrete, a critical durability concern. The findings provided valuable 

insights into the environmental conditions that exacerbate SCC and underscored the need for 

improved design and maintenance strategies. This work was complemented by Chapter 6, 

which introduced predictive models for analyzing corrosion dynamics in chloride-rich 

environments. These models offered accurate forecasts of corrosion rates and progression, 

enabling more proactive maintenance and design decisions, particularly in environments prone 

to chloride-induced corrosion. 

The focus then shifted to enhancing the structural performance of reinforced concrete 

columns through the use of welded steel mesh stirrups, as discussed in Chapter 7. The results 

demonstrated that this reinforcement strategy significantly improves the load-bearing capacity 

and ductility of concrete columns, making it a viable solution for enhancing structural 

resilience. This chapter’s findings contribute to the ongoing effort to develop more effective 

and economical reinforcement techniques. 
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Chapters 8 and 9 explored the potential of recycled aggregate concrete (RAC) in 

structural applications, with a particular focus on dry joint keys and bridge dry joints. The 

research demonstrated that RAC, when properly designed and utilized, can perform comparably 

to traditional concrete, supporting sustainability goals without compromising structural 

integrity. The development of a predictive model for RAC strength prediction in Chapter 9 was 

particularly noteworthy, as it provided a reliable tool for engineers working with sustainable 

materials in critical infrastructure projects. 

Finally, Chapter 10 investigated the shear strength of sand-lightweight concrete deep 

beams reinforced with steel fibers, highlighting the potential of this innovative material 

combination in applications where both high strength and reduced weight are crucial. The 

findings support the broader use of steel fiber-reinforced lightweight concrete in modern 

construction, contributing to the ongoing transformation of the industry toward more efficient 

and sustainable practices. 

 MAIN CONTRIBUTIONS 

The main contributions of this thesis, aimed at advancing structural engineering through 

the integration of predictive modeling and data-driven solutions, can be summarized as follows: 

 

Advancement of Discrete Optimization Models: The thesis introduced a discrete 

optimization model that marked a departure from traditional continuous methods. This 

innovation enabled the practical optimization of real-world reinforced concrete structures, 

setting a new standard in structural design practices. 

Integration of Predictive Models in Corrosion Analysis: By developing and applying 

predictive models for corrosion dynamics in chloride-rich environments, the thesis provided 

engineers with valuable tools for forecasting and mitigating corrosion-related damage in 

prestressed concrete structures. 

Enhancement of Reinforcement Techniques: The research demonstrated the 

effectiveness of welded steel mesh stirrups in improving the structural performance of 

reinforced concrete columns, offering a practical solution for enhancing resilience, particularly 

in seismic regions. 

Promotion of Sustainable Construction Materials: The thesis explored the use of 

recycled aggregate concrete in structural applications, validating its potential as a sustainable 
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alternative to traditional concrete. The development of a predictive model for RAC strength 

prediction further supports its broader adoption in infrastructure projects. 

Innovation in Lightweight Concrete Applications: The investigation of steel fiber-

reinforced sand-lightweight concrete deep beams contributed to the understanding and 

application of innovative materials in structural design, particularly in contexts where weight 

reduction and high strength are critical. 

 LIMITATIONS AND FURTHER RESEARCH 

While this thesis has made significant contributions to the field of structural engineering, 

certain limitations should be acknowledged, and avenues for further research should be 

explored: 

 

Generalizability of Findings: The research, while comprehensive, was based on 

specific case studies and experimental setups, which may limit the generalizability of the 

findings across different structural types, materials, and environmental conditions. 

 

Long-Term Performance Studies: Future research should focus on long-term studies 

to assess the durability and performance of the proposed materials and reinforcement techniques 

over extended periods, particularly in real-world applications. 

 

Expansion of Predictive Models: There is potential to expand the predictive models 

developed in this thesis to include a broader range of variables and environmental conditions, 

enhancing their applicability and accuracy in diverse structural scenarios. 

 

Integration of Emerging Technologies: Exploring the integration of emerging 

technologies, such as machine learning and advanced sensing, into the optimization and 

predictive modeling processes could lead to further innovations in structural engineering. 

 

Policy and Industry Adoption: Future research could also focus on the development 

of guidelines and standards to support the adoption of these innovative techniques and materials 

in industry practice, ensuring their broader impact on the construction sector. 

 



257 
 

In conclusion, this thesis has addressed critical gaps in the field of structural engineering 

by introducing innovative optimization models, predictive tools, and sustainable materials. The 

advancements made in each specific objective contribute to a paradigm shift in how structures 

are designed, analyzed, and maintained, paving the way for more resilient, efficient, and 

sustainable built environments. Continued research and collaboration between academia, 

industry, and policymakers will be essential to further refine these innovations and ensure their 

successful implementation in practice. 

 FINAL CONCLUSION 

All the research presented in this thesis culminates in the development of a 

comprehensive method that leverages finite data to significantly enhance structural design 

processes. By integrating random forest machine learning prediction methods, this work has 

proposed new, reliable equations applicable to various fields related to concrete structures. The 

innovative approach of using finite datasets and advanced predictive models not only addresses 

existing challenges in structural engineering but also sets a foundation for future research. This 

methodology opens up numerous opportunities for further exploration and application, 

providing a reliable framework for others in the field to build upon. The work presented here 

demonstrates the potential of combining empirical data with machine learning techniques to 

advance the science of structural design, ensuring that future developments in this area are 

grounded in robust, data-driven methods. 

 

 

 

.   



258 
 

APPENDIX A – BIBLIOGRAPHIC PRODUCTION 

This section presents additional research projects undertaken during my PhD period. 

While these studies may not be directly influenced by the central scientific question of this 

thesis, they undoubtedly contributed to the overall development of the work and enriched the 

research process. 

APPENDIX B – SUSTAINABLE MATERIAL CHOICE FOR CONSTRUCTION 

PROJECTS: A LIFE CYCLE SUSTAINABILITY ASSESSMENT FRAMEWORK 

BASED ON BIM AND FUZZY-AHP 

This chapter is published as an original research article in Building and Environment.  

https://doi.org/10.1016/j.buildenv.2021.107805 
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Cycle Sustainability Assessment framework based on BIM and Fuzzy-AHP. 
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ABSTRACT 

Construction professionals and researchers are increasingly looking for sustainable solutions 

for buildings in a bid to reduce some of the negative impacts associated with the sector. A 

common misconception is to consider sustainability as only concerning environmental issues, 

without regard for the interaction between a triple bottom line framework that is comprised of 

social, economic, and environmental factors. Material choice is known to impact building 

sustainability directly since the use of certain materials can dramatically alter the footprint 

generated over the life cycle of the building. However, the construction industry is not yet 

equipped with approaches that simultaneously account for all three aspects of sustainability 

when it comes to deciding on materials to adopt. This paper proposes a decision-making 

framework for construction professionals and researchers involving the integration of Life 

Cycle Sustainability Assessment (LCSA), Multi-Criteria Decision Analysis (MCDA), and 

Building Information Modeling (BIM) to choose suitable materials for buildings. The 

framework is built based on a literature review of relevant papers to identify critical factors and 

challenges to implementing this integration. The Fuzzy Analytic Hierarchy Process was chosen 
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as the MCDA method within the proposed framework, given that the problem of material choice 

often contains subjectivity, uncertainty, and ambiguity, which is best solved with fuzzy logic. 

A residential building was adopted as a case study to validate the proposed framework, and 

LCSA is applied, covering the construction, operation, and end-of-life phases of the building. 

 

Keywords: 

Life Cycle Sustainability Assessment; Multi-Criteria Decision Analysis; Building Information 

Modeling; Sustainable buildings; Fuzzy Analytic Hierarchy Process. 

 INTRODUCTION 

The construction industry is responsible for the significant consumption of natural 

resources, along with the generation of large amounts of waste [1]. In the last decade, 

researchers have attempted to study alternative materials, technologies, and design concepts 

that are less damaging to the environment. However, sustainability is not only concerned with 

environmental issues, as it involves an interaction between a triple bottom line framework 

comprised of social, economic, and environmental factors. In addition, several stakeholders are 

involved in a construction project, leading to the generation of various information from 

different parties and thus increasing uncertainty revolving around the decisions made [2]. Thus, 

there is a need for tools and technologies that facilitate a comprehensive analysis of a building 

and which cover all dimensionalities of sustainability.  

Many decisions are made across the design, construction, and operation phases of a 

construction project. Such decisions can impact multiple aspects of a project. Hence, it is crucial 

to understand how such impacts reflect on several factors, including economic, environmental, 

and social ones. There are several examples in which a decision in the construction field impacts 

multiple criteria: the process to determine the best energy retrofit decision for a building, 

defining the impacts of different retrofit scenarios [3]; the equipment selection for construction 

projects [4]; and the definition of the construction system productivity [5]. One method to 

handle the simultaneous criteria that need to be evaluated before a decision is made is through 

multi-criteria decision analysis (MCDA), whereby concerns about various conflicting criteria 

can be formally incorporated into the decision-making process [6].  

Of particular relevance in this study is the selection of suitable materials for building 

projects, which is a task that is linked to multiple criteria that require analysis and interpretation 
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concurrently. Material selection in projects is traditionally based on satisfying technical 

requirements or economic limits, such as material strength and price, respectively, without 

considering the life cycle impact associated with the material [7]. In addition, almost 60% of 

the time is wasted in the early stages of designing construction projects on comparing different 

materials, resources, and construction methods [8]. To improve the selection of appropriate 

materials, this study proposes a framework that is based on Life Cycle Sustainability 

Assessment (LCSA) to evaluate the environmental, social, and economic impacts of building 

materials and make an appropriate choice. LCSA is the result of combining three main 

processes: i) Life Cycle Assessment (LCA), representing the environmental dimension [9]; ii) 

Social Life Cycle Assessment (S-LCA), representing the social dimension [10]; and iii) Life 

Cycle Costing (LCC), describing the economic dimension [11]. As such, LCSA can be 

represented in equation form as follows [2]: 

 

LCSA = LCA + S-LCA + LCC (1) 

 

Application of LCSA within the construction industry is not without any challenges; a 

high degree of detail is required when considering an entire building as a functional equivalent 

of analysis within LCSA. The term 'functional equivalent' is introduced at the building level in 

contrast to the term 'functional unit' at the product level and includes all quantified functional 

requirements and technical requirements of the building used as a basis for comparison [12]. 

There are difficulties that exist in analyzing the building's life cycles due to the large number 

of data that needs to be considered [13,14]. 

 When it comes to analyzing the environmental impacts of construction materials 

choices, the literature shows that the combination of LCA and MCDA is significantly 

beneficial, as it can simplify the basic understanding of multiple perspectives in impact 

assessment [15]. Several MCDA methods have been discussed previously, including AHP 

(Analytic Hierarchy Process) [16], TOPSIS (Technique for Order Preference by Similarity to 

an Ideal Solution) [17], PROMETHEE (Preference Ranking Organization Method for 

Enrichment Evaluations) [18], and DEMATEL (Decision Making Trial and Evaluation 

Laboratory) [19].  

In this study, the MCDA method chosen is the Fuzzy Analytic Hierarchy Process 

(FAHP), a semiquantitative technique aimed to enrich its precedent, the Analytic Hierarchy 

Process (AHP) [20]. AHP uses a scale of numbers that shows how many times more important 



261 
 

or dominant one item is over another item related to the criterion against which they are 

compared [20]. However, the method assumes that the users have complete information on the 

subject analyzed and that all respondents are equally qualified, which rarely is the case [21]. 

Coping with inaccuracies and ambiguities not addressed by the AHP method, fuzzy logic is 

integrated into the process. The FAHP substitutes the subjective scale of numbers used in AHP 

with fuzzy triangular numbers, permitting a pairwise comparison matrix to cope with criteria 

measurement. In recent years, researchers have applied fuzzy logic to explore and solve 

problems in construction projects, including type-2 fuzzy logic systems (IT2FLS) and fuzzy 

Decision-Making Trial and Evaluation Laboratory (DEMATEL) [22,23]. 

Finally, to facilitate the simulations and data collection required to generate elaborate 

results on impacts associated with material choices, Building Information Modeling (BIM) is 

utilized in this work. BIM can improve the application of LCSA for construction material 

choice, as it represents a repository of digital information that enables the management of all 

data in a project [24]. Although the LCSA, MCDA, and BIM methodologies are already 

widespread in the literature, few applications integrate these concepts into a decision-support 

framework for design decisions in the construction sector.  

The novelty of this study is based on the presentation of a framework that applies 

Building LCSA during the project design phase using an MCDA and BIM to provide a choice 

on the most suitable and sustainable construction materials in a project. The framework is 

designed to be applied in the project design phase to ensure maximum control over material 

decisions and thus avoid further modifications in later stages of the project when the costs of 

implementing change are higher.  

The remainder of the study is organized as follows: a literature review is presented in 

Section 2. Section 3 explains the research methods, applying the proposed framework on a 

residential building. The results and discussions of the study are presented in Section 4. Finally, 

concluding remarks are presented in Section 5. 

 LITERATURE REVIEW 

A literature review of the proposed methodologies (LCSA, MCDA, and BIM) is 

presented in this section to highlight the use of such approaches in the construction literature. 

The review also focuses on methods deployed to support contractors and designers in the choice 

of materials for construction projects. 
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9.5.1 Life Cycle Sustainability Assessment 

The Life Cycle Sustainability Assessment (LCSA) is an interdisciplinary framework 

that evaluates the impacts associated with products and processes from an environmental, 

social, and economic perspective simultaneously [25]. In this way, LCSA comprises three main 

aspects, including LCA, LCC, and S-LCA. In the literature, however, many questions about the 

full application of LCSA are still discussed [2] and many studies still implement only part of 

the evaluation. This is mainly because the three pillars of sustainability have different maturity 

levels, which hinders the broad implementation of LCSA. 

The International Standards Organization (ISO), in the 1990s, published the most 

recognized standards of Environmental Life Cycle Assessment (E-LCA) methodology, usually 

referred to just as Life Cycle Assessment (LCA). According to ISO 14040, LCA is the 

compilation of inputs, outputs, and potential environmental impacts of a product system 

throughout its life cycle [26]. This approach has been widely applied in the construction sector 

as an essential tool to evaluate construction materials' environmental impacts in the different 

phases of the project life cycle [27]. LCA can be performed to analyze new buildings over their 

whole life cycle and can be implemented on existing buildings over their remaining life [28].  

The LCA methodology is broken down into four main steps [29]: (i) Goal and Scope 

definition; (ii) Life Cycle Inventory (LCI) analysis; (iii) Life Cycle Impact Assessment (LCIA); 

and (iv) Interpretation. This four-phase LCA framework can also be applied to LCC and S-LCA 

[30]. The first step in LCA involves defining the main aspects of the study, including i). the 

Functional Equivalent, which describes the primary function fulfilled by a product system and 

indicates how much of this function is to be considered in the LCA study; ii) the System 

Boundary, which refers to how far the analysis will be done (i.e., cradle-to-grave, cradle-to-

gate, gate-to-gate, gate-to-grave);  iii) the study's assumptions and limitations; and iv) the choice 

of the impact categories to be used, such as global warming potential (GWP), acidification, and 

eutrophication. 

The second phase of the methodology involves the compilation and quantification of 

inputs and outputs for the Functional Equivalent throughout the product's life cycle. The third 

step aims at understanding and evaluating the magnitude and significance of the potential 

environmental impacts. Lastly, the interpretation phase represents a technique for identifying 

and assessing all the information from the previous stages concerning the defined goal and 

scope. 
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In addition to LCA, several LCC and S-LCA approaches have been developed. LCC is 

defined as an assessment of all costs associated with a product’s life cycle linked, as perceived 

by the supplier, manufacturer, or consumer [31]. LCC thus provides a way of specifying the 

estimated total incremental cost of developing, producing, using, and retiring a particular 

product [32]. The primary objective of LCC is to optimize the lifecycle economic costs of a 

project. When implemented in the construction sector, the LCC approach estimates the net 

present value of all relevant costs throughout the building's life cycle, including construction 

costs, maintenance, repair and replacement costs, energy costs, and residual values [33]. 

On the other hand, S-LCA refers to a systematic method that accounts for all impacts 

borne by society throughout the life cycle of a product [34]. Using the S-LCA approach, the 

practitioner deals with positive and negative effects on society [35]. Regarding the use of this 

approach in the construction sector, different social impacts can be examined, such as impacts 

on workers' safety, fair salary, and access to material resources [36].  

When it comes to selecting construction materials, applications of the LCSA method are 

still under development, and there are some limitations in the process. Fauzi et al. [37] discussed 

several issues found in the literature on the LCSA application, and one aspect that deserves 

great emphasis is the difficulty of integrating the three approaches together (i.e., LCA, LCC, 

and S-LCA). In addition, not all the environmental and social indicators can be calculated as a 

function of the study's functional equivalent, which generates a significant drawback in result 

interpretation. There is also the issue of the lack of reliable economic and social impact 

databases that are still under development in comparison to a range of reliable environmental 

impacts’ databases. 

9.5.2 Multi-Criteria Decision Analysis 

In construction, it is necessary to consider different views of the stakeholders involved 

to decide on specific aspects of a project, including quality, security, ethics, finance, and human 

resource aspects. Hence, multiple criteria are often embodied in a significant number of the 

decisions undertaken during the design stage of a project, and these have to be analyzed to 

ensure an optimum decision. A high number of methods in the scientific literature support 

strategic decision makings such as mathematical optimization [38], fuzzy set theory [39], and 

the analytic hierarchy process (AHP) [40]. The use of the MCDA method is encouraged to 
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generate effective, sustainable solutions in construction [15]. However, implementing these 

techniques requires systematic tools and methods to be developed. 

Regarding the construction materials choice, several MCDA methods are already 

applied in the literature. Nadoushani et al. [41] used the Delphi and AHP methods to identify 

the most sustainable façade system, among five different alternatives, to replace a real building's 

existing worn façade. The authors considered environmental, social, and economic criteria in 

the analysis. Akadiri et al. [42] proposed a model for selecting sustainable construction 

materials for single-family housing in the United Kingdom using Fuzzy AHP.  

In this work, the Fuzzy Analytic Hierarchy Process (FAHP) method is used. The FAHP 

approach enriches its precedent, Analytic Hierarchy Process (AHP), combining it with fuzzy 

logic theory [20]. AHP is based on the Newtonian and Cartesian way of thinking, which consists 

of breaking down the problem into smaller parts as many times as necessary until a precise and 

scalable level is reached. AHP requires the use of experts, and one-to-one comparison 

judgments are applied among similar criteria, generating the priorities for classifying the 

alternatives [43]. To counter the AHP method's deficiency in its reliance on expert input [44], 

the Fuzzy AHP method is deployed, employing the fuzzy set theory concepts in hierarchical 

structure analysis using fuzzy numbers instead of real numbers. 

9.5.3 Building Information Modeling 

The concept of Building Information Modeling (BIM) revolutionized the way 

construction projects are conceived by developing virtual models with parameterized elements. 

It allows a constant update of the project in a dynamic fashion. Thus, the resulting model is a 

data-rich, intelligent, and parametric digital representation of the facility [45]. It provides 

professionals with the necessary information to perform useful analysis. BIM-based software 

enables professionals to reduce costs, detect design errors, and track building timelines.  

The adoption rate of BIM has increased significantly in recent years. BIM is commonly 

adopted for enhancing decision-making by reducing the amount of work involved in evaluating 

various alternatives in the early design stages [46]. Furthermore, BIM is considered an effective 

tool to assist in building life cycle analysis [47]. Many studies in the literature discuss the 

advantages and challenges of integrating BIM and LCA. However, a more in-depth discussion 

covering the three dimensions of sustainability is necessary. Llatas et al. [2] conducted a 

systematic literature review regarding the integration of LCSA and BIM. This study showed 
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that most papers found in the literature use BIM solely for assessing environmental impacts 

produced by buildings. Only six papers were related to environmental and economic impacts 

simultaneously, while none of the studies reviewed included the analysis of social impacts. 

Obrecht et al. [47] performed a systematic literature review of studies relating to BIM 

as a tool to facilitate Building LCA application. They found that BIM is mainly used as a 

repository of information in LCA analysis; the BIM-based software is utilized to generate the 

materials take-off. The quantities are exported to other software to perform the LCA analysis. 

In this case, the BIM-LCA integration occurs manually. Conversely, there are studies that 

propose how the exchange process could be automated. However, this discussion contemplates 

only the environmental dimension of the life cycle analysis. 

 In this study, BIM is considered the primary tool for creating the inventory database 

used in the LCSA. Modeling the building using a BIM platform will allow the automatic 

generation of material quantities. This would also enable simulations to be carried out of the 

building, which can be useful for generating additional data for the LCSA analysis. BIM 

simulations are already enabled by tools developed in the market, such as Navisworks and 

Synchro [48]. 

 MATERIALS AND METHODS 

The environmental, social, and economic assessments involved in building construction 

are guided by a set of European standards entitled 'Sustainability of construction works — 

Sustainability assessment of buildings,' which were utilized. These standards are divided into 

four main parts: Part 1 - General framework [49], Part 2 - Framework for the assessment of 

environmental performance [28], Part 3 - Framework for the assessment of social performance 

[50], and Part 4 - Framework for the assessment of economic performance [51].  The four-phase 

LCA framework presented by ISO Standards can be applied to LCSA [52]. As such, the 

conceptual framework proposed in this research, which is given in Figure 3.1, is based on 

recommendations from ISO 14040 and 14044 standards on LCA [26,53]. ISO 15686-5, entitled 

‘Buildings and constructed assets - Service life planning - Part 5: Life-cycle costing’, was used 

to guide the LCC application [54]. The UNEP ‘Guidelines for Social Life Cycle Assessment of 

Products’ was used as the basis for the application of S-LCA [55]. Finally, LCA, LCC, and S-

LCA's harmonization was implemented into the proposed method according to what has already 

been discussed in the literature [2,37]. 
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BIM is utilized to facilitate the material quantity take-off and as a simulation tool to 

calculate and understand the impacts of the building's whole life cycle [2]. The Fuzzy Analytic 

Hierarchy Process (FAHP) method is adopted as the MCDA method. 

 

 

Figure 9.1 - Conceptual framework proposed in this work 
 

The first stage of the framework in Figure 3.1 involves defining all the features of the 

project. For LCSA, it is necessary to identify the goal and scope of the analysis clearly and 

accurately, including functional equivalent, system boundary, target audience, assumptions, 

and limitations of the study. A cradle-to-grave analysis is adopted in this study, where the 

following phases are considered: extraction of raw materials, transportation, fabrication, 

construction, operation, and demolition of the building. However, the study may also be 

restricted to only some stages of the building's life cycle depending on the goals of the decision-
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maker. The decision-maker can determine the study's system boundaries, considering the 

purpose of the analysis and its target audience [56]. The impact categories are to be chosen in 

line with the most relevant to the goals of the analysis. Construction materials are also clearly 

defined in this step. The impact categories from LCSA will be the criteria utilized in the 

decision-making process with MCDA, while the construction materials modeled in BIM will 

be the alternatives to be compared via MCDA. 

It is necessary to choose the most appropriate MCDA method for the project, defining 

a multi-objective formulation that is the aim of the decision-maker to optimize. In this study, 

FAHP was proposed based on the constrained fuzzy arithmetic instead of the concept of 

standard fuzzy arithmetic. The constrained fuzzy arithmetic is a recent approach that has the 

advantage of eliminating the false increase of uncertainty of the overall fuzzy weights. In this 

study, it corresponds to a fuzzy extension of the geometric mean method, as it is the most 

applied approach in the literature [20].  

The second step herein is to define the LCI and the three-dimensional (3-D) model 

developed in a BIM-based software. This step will be the primary tool to assist data collection 

and inventory creation. Utilizing BIM makes it possible to gather environmental, economic, 

and social data in the same model [57]. At this stage, all building data (i.e., construction 

materials and alternative construction methods) must be inserted into the BIM digital model to 

facilitate the analysis's continuity and data collection. Depending on the impact categories 

chosen for the study, it may be necessary to enrich the data collection with supplementary 

information. Therefore, it is suggested to use the BIM model to perform simulations and 

analyses that enable the determination of these additional data. Developments in BIM mean 

that professionals can make use of the interoperability between software so that there is no 

information loss during the process.  Finally, regarding the application of FAHP, it is necessary 

to create a questionnaire tool to obtain professionals' opinions on their preferences among the 

impact categories tested, based on a pairwise comparison. The professionals' opinions must be 

collected at this stage so that the data can then be evaluated. 

The third phase of the study necessitates evaluating the LCIA of the environmental, 

social, and economic pillars. At this analysis level, the LCIA methods assess the data collected 

during the LCI phase (i.e., ReCIPe [58], TRACI [59], CML [60], etc.). The classification and 

characterization steps are mandatory in LCIA, while normalization, grouping, and weighting 

are optional. In order to rank the alternatives, the MCDA method chosen is utilized. Figure 3.2 

shows how the analysis would be organized at this phase. 
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Figure 9.2 - Hierarchy used in the proposed framework 
 

 

Depending on the project and the stakeholders involved, the ranking can be made in 

different ways since different impact categories can be prioritized in each case. For example, in 

a given project, environmental impacts may have a greater weight in comparison to the 

economic impacts for the target audience; this, however, may not be true for all projects. As 

such, the MCDA method is applied in this stage to calculate the criteria weights.  

In FAHP, the process of pairwise comparison, similar to AHP, is conducted based on a 

questionnaire to determine how many times more important one object is over another. The 

respondents use a scale of integers from 1 (equally important) to 9 (extremely more important) 

in the questionnaire, as was proposed by Saaty in the crisp AHP method. The results are then 

transformed into triangular fuzzy numbers (TFN) to solve uncertainties in the response given. 

A TFN is a fuzzy number whose membership function is determined by three real numbers 

𝑐ଵ ≤ 𝑐ଶ ≤ 𝑐ଷ and it is commonly represented by �̃� = (𝑐ଵ, 𝑐ଶ, 𝑐ଷ). 

Let 𝐴ሚ = ൛𝑎ൟ
,ୀଵ


 , 𝑎 = ൫𝑎 , 𝑎ଶ, 𝑎 ൯ be the fuzzy pairwise comparison matrix for 

any 𝑖, 𝑗 ∈  {1, . . . , 𝑝}, obtained after transforming the responses of the questionnaire distributed 

among professionals into TFNs. 𝐴ሚ is a square matrix whose elements are TFNs defined in the 

range [
ଵ

ଽ
, 9] and with the main diagonal equal to (1, 1, 1), since these elements represent the 

comparison of one object with itself, 𝑎. 

According to the fuzzy extension of the geometric mean method, the criteria weights 

are obtained by normalizing the geometric means of the rows of the pairwise comparison matrix 



269 
 

𝐴ሚ. The problem found in this method, when the concept of standard fuzzy arithmetic is utilized, 

is that different values of the same variables enter the calculation simultaneously (for more 

details, see Krejcí et al. [61]), which means that the resulting TFNs do not represent the true 

ranges for fuzzy weights.  

Therefore, when the standard fuzzy arithmetic is used, the calculation leads to a false 

increase in the model's uncertainty. This work proposes the use of constrained fuzzy arithmetic 

to calculate criteria weights. The fuzzy weight 𝑤 of each criterion of the analysis is calculated 

based on the results of the pairwise comparison. For TFN, three different formulae are needed 

to calculate the lower, middle, and upper significant values. The criteria weights are determined 

by Eq. (2) - (4) [62], where 𝑤 represents the fuzzy weight of criterion 𝑖 and 𝑤ଵ, 𝑤ଶ and 𝑤ଷ 

are real numbers, corresponding to the significant values of the triangular fuzzy number denoted 

as 𝑤 = (𝑤ଵ, 𝑤ଶ, 𝑤ଷ), 𝑤ଵ < 𝑤ଶ < 𝑤ଷ.  

 

𝑤ଵ = min 

⎩
⎨

⎧ ට∏ 𝑎
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⎭
⎬

⎫

 (4) 

 

The defuzzification process is then carried out, in which a fuzzy set is mapped to a crisp 

set. An example of a defuzzification method widely used in the literature is the center of gravity 

(COG) method [63], in which the crisp set is obtained via the arithmetic mean of the elements 

of the fuzzy set. In this study, the authors propose the following formula: 

 

𝐶𝑂𝐺(𝑤) =
∑ 𝑤௧

ଷ
௧ୀଵ

3
 (5) 

 

Defuzzified values are then normalized, and it is possible to evaluate the alternatives of 

construction materials, taking into account the ranking already created among the criteria and 

the results obtained from LCIA. The LCIA results should also be normalized, so that data from 
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different impact categories can be compared on a common scale. The LCIA normalized values 

are considered as the weights of the alternative concerning each criterion, with 𝑢
 being the 

representation of the weight of the 𝑘-th alternative concerning criterion 𝑖. Then, the overall 

weight of alternative 𝑘 will be calculated by Eq. (6), presented below: 

 

𝑢 =  𝑤 . 𝑢
  



ୀଵ

 (6) 

 

The last step herein is the interpretation phase, which corresponds to the MCDA 

method's application to assist the professionals in the decision-making process. The decision-

maker must be able to select the optimum sustainable material for the project based on the three 

pillars of sustainability. In these terms, performing a Sensitivity Analysis (SA) is encouraged, 

as it allows the LCSA practitioner to compare all available alternatives that have been 

highlighted as suitable from the previous steps. Sensitivity analysis seeks to determine the effect 

of a given item's variation on the total impact assessed for that item. A sensitivity analysis is 

conducted to monitor the preference ranking's robustness among the alternatives tested in this 

work. 

 TOOLS TO VALIDATE THE PROPOSED FRAMEWORK 

This part illustrates the practical application of the four phases of LCSA proposed in 

this study. 

9.7.1 Goal and Scope 

The scope of this study is to determine the best building materials among a pre-defined 

material list, considering environmental, economic, and social aspects. This work's functional 

equivalent consists of a 36-unit residential building composed of 10 stories (ground floor, eight 

floors, and a roof) constructed in Rio de Janeiro, Brazil. Each unit consists of two bedrooms, a 

sitting room, a kitchen, a bathroom, and a service area. The building service life considered in 

this work is 60 years. Finally, a gate-to-grave system boundary is used, comprising the 

following stages of the building life-cycle: construction, operation and maintenance (O&M), 

and end-of-life. For the end-of-life phase of the building, it was assumed that the building would 
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be imploded, and the analysis would include the relevant material collection rates and 

landfilling rates. The same system boundary is adopted during the environmental, economic, 

and social analyses so that the harmonization of the three approaches occurs satisfactorily.

  The environmental impact categories chosen for this study are widely discussed in the 

literature [64] and include Global Warming Potential (GWP), Acidification Potential (AP), and 

Eutrophication Potential (EP). GWP represents a measure of greenhouse gas emissions that 

may have adverse impacts on the ecosystem and human health. The acidification potential 

represents the ability to increase the concentration of H⁺ in a molecule in the presence of water, 

which includes potential effects such as forest decline and deterioration of construction 

materials. The eutrophication potential measures excessively high levels of macronutrients, 

such as nitrogen and phosphorus, and can cause an undesirable change in species composition 

and high biomass production [65].  

For the economic analysis, the impact category is the life-cycle cost associated with the 

building phases considered in the system boundary. During the O&M phase, in addition to the 

annual building maintenance and repair costs, it was decided to consider the annual energy cost 

for lighting and HVAC. Improving energy efficiency in buildings plays a crucial role in 

ensuring sustainable developments in the future, as it is known that energy resources are limited. 

Besides, construction material choice directly influences the energy efficiency and the 

sustainability of a building [66]. Lastly, for the social analysis, the stakeholder category adopted 

in this work refers to the workers. From this perspective, the impact category analyzed is fair 

salary, with Fair Wage Potential (FWP) adopted as the quantitative indicator.  

To implement FAHP, each impact category is considered as a criterion. Since the 

evaluation criteria for building materials can have various connotations and meanings, there is 

no logical reason to treat them as if they are each of equal importance [15]. The dimensions and 

criteria chosen are presented in Table 3.1, where 𝐷 refers to the dimension 𝑖, while 𝐶 refers 

to the criterion 𝑗. 

 
Table 0.1 - Dimensions and criteria to be considered in the analysis 

Dimensions (Di) Criteria (𝑪𝒋) Units 

(D1) Environmental 

(C1) Global Warming Potential kg CO₂ eq. 
(C2) Acidification Potential kg SO2 eq. 

(C3) Eutrophication Potential kg N eq. 
(D2) Economic (C4) Life-cycle cost Brazilian Real (R$) 

(D3) Social (C5) Fair Wage Potential FWeq. 
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9.7.2 Life-Cycle Inventory 

The building prototype for the case study was developed in Autodesk Revit®, a BIM-

based software [67]. In this work, BIM is used as a tool to facilitate the material take-off process 

and the simulation needed to compare different building materials' behavior in terms of energy 

consumption. All materials to be used in the building must be defined in the BIM 3D model, 

with the definition of their physical and thermal properties. Therefore, the modeling was 

developed based on Level of Development (LOD) 400, in which the components are graphically 

represented as a specific object with detailing, fabrication, assembly, and installation 

information. The 3-D view and the plan view of the building are shown in Figure 3.3. 

 

 

Figure 9.3 - Case study modeled in a BIM-based software 
  

The materials for the different alternatives have been defined based on the experience 

of the professionals involved in this work, as shown in Table 3.2. Each alternative's material 

take-off was determined via four different BIM models, allowing an automatic quantitative data 

collection. Regarding the environmental analysis, the service life, in years, for each material, in 

addition to the transportation distance, in kilometers, from the manufacturer location to the 

building site by diesel truck, were defined. 

An energy model was created for each alternative in the same BIM-based software used 

to model the structure regarding the economic analysis. An energy model in Autodesk Revit® 

is a particular form of geometry used by the energy simulation mechanism, capturing the 

building's main heat transfer paths. It is developed with Green Building XML schema 
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(gbXML), a language designed to facilitate the transfer of building data stored in Building 

Information Models (BIM) to environmental analysis tools [68]. The assumptions made to 

create the energy models were the following: the building type is Multi-Family; the Sliver Space 

Tolerance is 0.3048m, and the building HVAC system is Split System with mechanical 

ventilation via cooling. The building's annual energy use was calculated, considering the energy 

for HVAC and lighting, as shown in Table 3.3.  

  
Table 0.2 - Database concerning the four alternatives, where B.L. stands for 'Building Life.' 

BIM 

Category 

Alternative 1 

Materials 
Material 

mass (kg) 

Service Life 

(years) 

Transportation 

distance (km) 
 

Ceilings 

Acoustic ceiling system, fiberglass 4,390 50 72  

Suspended grid 1,827 50 72  

Paint, interior acrylic latex 318.6 7 24  

Doors 
Kiln-dried Ash hardwood lumber of 4" 5,810.31 50 38  

Wood stain, water-based 36.87 10 38  

Slabs 
Structural concrete, 4001-5000 psi 565,175 60 (B.L.) 17  

Steel 5,448 60 (B.L.) 17  

Floors 

Ceramic tile, unglazed 35,242 60 72  

Cement mortar 6,294 60 72  

Cement grout 780.6 60 72  

Walls 

Brick, 1/2" joint 929,061 150 17  

Lime mortar 161,037 60 72  

Grout fill: thickset mortar 260,827 60 72  

Reinforcing Steel 16,451 60 17  

Paint, exterior acrylic latex 1,052 10 24  

Windows 

Glazing, monolithic sheet, tempered 6,610 40 40  

Aluminium, (100x20x2) mm, 1,28 kg/m 1,002.45 60 63  

Paint, enamel, solvent-based 63.9 15 63  

BIM 

Category 

Alternative 2 

Materials 
Material 

mass (kg) 

Service Life 

(years) 

Transportation 

distance (km) 
 

Ceilings 

Ceiling tile, aluminium (3.37kg/m²) 5,498 70 63  

Suspended grid 1,827 50 63  

Powder coating, metal stock 636.3 50 1  

Doors 
Domestic softwood, US, AWC - EPD 2,333 30 38  

Polyurethane foam (PUR) rigid board 135.68 75 29  
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Table 3.2 - Database concerning the four alternatives, where B.L. stands for 'Building Life,' 
Continued. 

Slabs 
Glass Fibre Reinforced Concrete 567,321 60 (B.L.) 40 

Steel 81,409 60 (B.L.) 18 

Floors 

Terracotta tile 89,152 75 72 

Thickset mortar 13,280 60 72 

Cement grout, Latricrete - EPD 372,1 60 72 

Walls 

Concrete masonry unit (CMU), solid 1,217,571 100 72 

Mortar type N 71,158 60 72 

Paint, exterior acrylic latex 1,052 10 24 

Windows 

Glazing, double, insulated (air) 4,715 40 40 

Aluminium extrusion, anodized, AEC - EPD 3,318.6 60 63 

Paint, exterior metal coating, silicone-based 20.95 30 24 

BIM 

Category 

Alternative 3 

Materials 
Material 

mass (kg) 

Service Life 

(years) 

Transportation 

distance (km) 

Ceilings 
Acoustic ceiling tile - galvanized steel 7,962 75 43 

Suspended grid 1,827 50 43 

Doors Redwood decking, AWC - EPD 4,876 25 24 

Slabs 
Glass Fibre Reinforced Concrete 567,321 60 (B.L.) 40 

Fabricated steel reinforcement 81,409 60 (B.L.) 18 

Floors Tile backer board 16,270 40 72 

Walls 

Perlite filled clay block, Poroton 345,789 150 12 

Lime mortar (Mortar type K) 107,267 60 72 

Thickset mortar 260,941 60 72 

Fabricated steel reinforcement 16,458 60 (B.L.) 18 

Paint, exterior acrylic latex 1,052 10 24 

Windows 

Glazing, triple, insulated (air) 7,139 40 40 

Aluminium extrusion, anodized 3,318.6 60 63 

Paint, exterior metal coating, silicone-based 20.95 30 24 

BIM 

Category 

Alternative 4 

Materials 
Material 

mass (kg) 

Service Life 

(years) 

Transportation 

distance (km) 

Ceilings 

Ceiling tile, steel mesh 9,658 75 31 

Suspended grid 1,827 50 43 

Zinc coating (galvanized) for steel G60 298.6 60 (B.L.) 31 

Doors White oak lumber, 4 inches 190.5 50 38 
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Table 3.2 - Database concerning the four alternatives, where B.L. stands for 'Building Life,’ 

Continued. 

Slabs 
Structural concrete, 4001-5000 psi 548,060 60 (B.L.) 24 

Steel 5,448 60 (B.L.) 17 

Floors 

Granite tile 60,178 50 21 

Cement mortar, Latricrete - EPD 7,143 60 72 

Cement grout, Latricrete - EPD 372.1 60 72 

Walls 

Perlite filled clay block, Poroton - EPD 345,789 150 12 

Lime mortar (Mortar type K) 107,267 60 72 

Thickset mortar 260,941 60 72 

Steel, concrete reinforcing steel 3,515 60 (B.L.) 17 

Paint, Brillux, Silicone facade paint - EPD 1,052 15 24 

Windows 

Electrochromic glass, Saint-Gobain, Sage Glass 8,386.3 50 40 

Aluminium extrusion, anodized, AEC - EPD 3,318.6 60 63 

Paint, exterior metal coating, silicone-based 20.95 30 24 

 

Table 0.3 - Results of energy simulations in the BIM models 

Alternatives 
Annual Energy Consumption 

for Lighting (kWh) 
Annual Energy Consumption 

for HVAC (kWh) 

Alternative 1 21,591 81,225 

Alternative 2 19,802 62,709 

Alternative 3 20,234 71,739 

Alternative 4 23,606 63,825 

  

Data regarding the prices of materials, equipment, and construction services were used 

to analyze the economic impacts of the alternatives, and data about the construction workers in 

Rio de Janeiro, Brazil, were used to analyze the social implications. Depending on the materials 

and construction methods chosen for the building, different skills will be required to carry out 

the associated activities. The budget for materials and services and the number of professionals 

required for each alternative were determined based on the data found in SINAPI, which can 

be translated as ‘the Brazilian System of Costs and Indices Research of Civil Construction.’ 

SINAPI aims to produce monthly series of costs and indices for the Brazilian construction 

sector, along with a monthly series of average labor wages and average prices for materials, 

equipment, and construction services [69]. The data collected are summarized in Table 3.4. 
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Table 0.4 - Brazilian data regarding the resource requirement of workers in the construction 
sector 

  Professionals needed in each alternative 

  Construction phase 

Category 

Brazilian 

average wage 

(Brazilian Real 

– R$) 

Alternative 

01 

Alternative 

02 

Alternative 

03 

Alternative 

04 

Bricklayer's mate  R$    1,442.05  14 10 14 10 

Bricklayer - level 1  R$    1,507.78  0 3 0 0 

Bricklayer - level 2  R$    2,010.37  10 9 7 8 

Bricklayer - level 3  R$    2,372.24  2 0 4 5 

Bricklayer - level 4  R$    2,734.10  0 2 0 0 

Master builder  R$    3,091.89  1 1 1 1 

Site engineer  R$    9,483.29  1 1 1 1 

  O&M phase 

Bricklayer/painter R$ 1.846,12 2 2 2 2 

  End-of-life phase 

Bricklayer's mate  R$    1,442.05  2 2 2 2 

Master builder  R$    3,091.89  1 1 1 1 

  

Finally, a questionnaire was distributed to the respondents to obtain their preferences 

among criteria, following what is proposed in the AHP method. The survey had been sent to 12 

Brazilian engineers, but only 7 of them responded. All respondents had to have at least two 

years' experience in the LCA approach. Among them, four respondents work or have worked 

as site engineers, while three are sustainability engineers. The questionnaire required the 

engineers to conduct a pairwise comparison among the material sustainability criteria adopted 

in this study, as presented in Figure 3.4. The arithmetic mean of the responses from the seven 

professionals was calculated for each pairwise comparison. The final results are shown in Table 

3.5 and treated in the next stage of the proposed framework to transform crisp numbers into 

fuzzy ones. 
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Figure 9.4 - Part of the questionnaire distributed to the engineers 

 

 
Table 0.5 - Results of the pairwise comparison questionnaire based on crisp AHP. 

 C1  C2  C3  C4  C5  

C1 1 3 5 1
3ൗ  1

3ൗ  

C2 1
3ൗ  1 3 1

5ൗ  1
3ൗ  

C3 1
5ൗ  1

3ൗ  1 1
7ൗ  1

5ൗ  

C4  3 5 7 1 3 

C5  3 3 5 1
3ൗ  1 

9.7.3 Life Cycle Impact Assessment 

Life Cycle Impact Assessment is the third phase of the LCSA application. Different 

LCIA methodologies are available in the literature that represent different ways of evaluating 

the data collected during the LCI phase. The results of this phase are presented separately for 

each of the environmental, economic, and social impacts, as follows. 

 

9.7.3.1 Environmental Impacts 

TRACI 2.1 characterization scheme was adopted in this work to classify and 

characterize the environmental impacts [65]. Within the TRACI methodology, the impact 

categories are characterized at the midpoint level, drawing cause-effect chains to show the point 

at which each category is characterized. The Tally® application was used in this study to match 

each material in the 3-D BIM model in Autodesk Revit® with the GaBi database materials, 
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allowing an automated exchange process [70]. The results for the four alternatives are presented 

in Table 3.6. 

  
Table 0.6 - Environmental impacts for the alternatives evaluated in this study 

 Impact Category 
Construction 

phase 

O&M 

phase 

End-of-

life 

phase 

Total 

 

Alt. 

01 

(C1) Global Warming (kg CO₂eq)  3,123 50,521 44,940 98,584  

(C2) Acidification (kg SO₂eq)  14.47 311.7 191.6 517.77  

(C3) Eutrophication (kg Neq)  1,178 17.23 10.49 1,205.72  

Alt. 

02 

(C1) Global Warming (kg CO₂eq)  6,364 216,551 41,924 264,839  

(C2) Acidification (kg SO₂eq)  29.49 885.1 187.4 1,101.99  

(C3) Eutrophication (kg Neq)  2.40 41.82 9.99 54.21  

Alt. 

03 

(C1) Global Warming (kg CO₂eq)  2,636 212,205 32,161 247,002  

(C2) Acidification (kg SO₂eq)  12.21 951 134.3 1,097.51  

(C3) Eutrophication (kg Neq)  0.99 45.35 7.49 53.83  

Alt. 

04 

(C1) Global Warming (kg CO₂eq)  2,599 547,488 51,254 601,341  

(C2) Acidification (kg SO₂eq)  12.04 4,817 172 5,001.04  

(C3) Eutrophication (kg Neq)  0.98 112 11 123.98  

 

9.7.3.2 Economic Impacts 

For the economic analysis, the calculation was performed in Microsoft Excel. The prices 

and costs provided by SINAPI concerning the city of Rio de Janeiro, published on January 21, 

2021, were imported to Microsoft Excel to determine the life-cycle cost for each alternative 

[69]. Regarding the annual expenses associated with the O&M phase, the net present value 

(NPV) formula was used in Excel, a metric to calculate the present value of a succession of 

future payments, deducting a capital cost rate. A rate of 3% was considered in the calculations. 

The values presented in Table 3 regarding the annual consumption of energy in each 

alternative were multiplied by the tariff charged by the private company responsible for the 

electricity generation, distribution, and sale in Rio de Janeiro. The low voltage tariff for 

residential units that consume up to 300 kWh in January 2021 is 0.84183 [71]. It was considered 

that the annual consumption measured by BIM simulations would be the same throughout the 

building service life, that is, for 60 years. Regarding the annual maintenance and repair costs, 

an estimate was made considering the materials' service life for each alternative and the values 

presented in SINAPI. Elevator maintenance costs were not considered in the analysis, as the 

objective of this study is to focus on the choice of construction materials. The final results are 

shown in Table 3.7. 
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Table 0.7 - Life-cycle cost for the alternatives evaluated in this study, with the costs presented in 
Brazilian Real 

Alternatives 
Construction 

cost 

Energy cost Maintenance 

cost 

End-of-life 

cost 

Total life-cycle 

cost 

Alt. 01 R$ 4,149,370.18 R$ 15,056,422.71 R$ 465,604.26 R$ 58,000.00 R$ 19,729,397.15 

Alt. 02 R$ 4,225,102.32  R$ 12,082,950.40 R$ 614,177.41 R$ 58,000.00 R$ 16,980,230.13 

Alt. 03 R$ 5,730,095.63 R$ 13,468,569.17 R$ 749,241.23 R$ 58,000.00 R$ 20,005,906.03 

Alt. 04 R$ 5,426,852.74 R$ 12,803,436.88 R$ 619,001.18 R$ 58,000.00 R$ 18,907,290.80 

 

9.7.3.3 Social Impacts 

For the social analysis, the calculation was also performed in Microsoft Excel. The 

social impact category used the characterization model proposed by Neugebauer et al. [72] to 

transfer the qualitative midpoint impact category named 'Fair Wage' into a quantitative one. 

The inventory results of the actual average remuneration and the actual working time are 

multiplied with the regionalized inequality characterization factor. The Gini Coefficient related 

to Brazil, a measure of the deviation of income distribution among individuals or households 

within a country from a perfectly equal distribution, was adopted [73]. For this coefficient, a 

value of 0 represents absolute equality, and a value of 1 represents absolute inequality. Brazil 

occupies the 84ª position in the rankings, with a Gini Coefficient of 0.539. 

Neugebauer et al. [72] proposed the following formula to characterize this impact 

category: 

 

𝐹𝑊𝑃 =
ோௐ

ெௐ
×

ௐ ்

ோௐ ்
× ൫1 − 𝐼𝐸𝐹

ଶ൯  (7) 

 

Where 𝐹𝑊𝑃 indicates the Fair wage potential [expressed in FWeq.] representing 

process n within a product's life cycle taking place at a defined location; 𝑅𝑊 indicates the 

average monthly wages paid to the workers employed in process n; 𝑀𝐿𝑊  is the minimum 

living monthly wages in the respective country or region; 𝐶𝑊𝑇 represents the contracted 

working time per country or sector [hours/week]; 𝑅𝑊𝑇 indicates the real working time 

[hours/week] of workers performing the process n; and 𝐼𝐸𝐹 represents the inequality factor 

[expressed in percentages] of the country or region where process n is performed. 

The 𝑀𝐿𝑊 is the Brazilian minimum wage in January 2021, taken as R$ 1,100.00, while 

𝐶𝑊𝑇 equals 40 hours per week. 𝑅𝑊𝑇 is equal to 49 hours for bricklayer's mates, 41 hours 

for site engineers, and 44 hours for the other categories. The Fair Wage Potential was calculated 

in Microsoft Excel, and the results are shown in Table 3.8. 
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Table 0.8 - Fair Wage Potential for the different workers’ categories 
Category 𝐹𝑊𝑃 (FWeq.) 

Bricklayer's mate 0.7593 

Bricklayer - Level 1 0.8841 

Bricklayer - Level 2 1.1788 

Bricklayer - Level 3 1.3910 

Bricklayer - Level 4 1.6031 

Master builder 1.8129 

Site Engineer 5.9674 

Bricklayer/Painter 1.0825 

 

In order to assign this indicator to the functional equivalent, this work proposes to 

calculate a weighted average of these values, with the weights corresponding to the number of 

professionals in each category. With this, the fair wage potential for each alternative was 

obtained. 

Finally, it is important to note that the FWP indicator is the only one to be maximized 

in this study; all others correspond to negative impacts and should be minimized. In order to 

facilitate the application of the MCDA method and the ranking of alternatives to be tested, the 

authors suggest that the inverse of 𝐹𝑊𝑃 be used as the final indicator in the analysis. In this 

way, all the indicators used will be minimized. This calculation was performed, and the final 

results are presented in Table 3.9. 

 

Table 0.9 - Social impacts for the alternatives evaluated in this study 
 

 

 

9.7.3.4 Weight Generation  

The MCDA method is used to weigh the criteria established. The results obtained in the 

opinion questionnaire, presented in Table 5, need to be transformed into triangular fuzzy 

numbers. Among the several AHP fuzzification approaches to convert a crisp set to a fuzzy set, 

it was decided to apply the fuzzy extension of the geometric mean method based on constrained 

Alternatives 
Final results for 

social analysis 
 

Alt. 01 0.858  

Alt. 02 0.830  

Alt. 03 0.884  

Alt. 04 0.805  



281 
 

fuzzy arithmetic. Therefore, the pairwise comparison matrix elements were modeled by 

triangular fuzzy numbers, as shown in Table 3.10. 

 

Table 0.10 - Fuzzy pairwise comparison matrix of the criteria 

 C1  C2  C3  C4  C5  

C1 (1,1,1) (2,3,4) (4,5,6) (
1

4
,
1

3
,
1

2
) (

1

4
,
1

3
,
1

2
) 

C2 (
1

4
,
1

3
,
1

2
) 

(1,1,1) (2,3,4) 
(
1

6
,
1

5
,
1

4
) (

1

4
,
1

3
,
1

2
) 

C3 (
1

6
,
1

5
,
1

4
) (

1

4
,
1

3
,
1

2
) 

(1,1,1) 
(
1

8
,
1

7
,
1

6
) (

1

6
,
1

5
,
1

4
) 

C4  (2,3,4) (4,5,6) (6,7,8) (1,1,1) (2,3,4) 

C5 (2,3,4) (2,3,4) (4,5,6) (
1

4
,
1

3
,
1

2
) (1,1,1) 

 

With the pairwise comparison matrix constructed, criteria fuzzy weights can be obtained 

by Eq. (2) - (4). Then, the triangular fuzzy numbers were deffuzified using Eq. (5), and the 

nonfuzzy normalized weights were also calculated, as highlighted in Table 3.11. In order to 

facilitate the application of the formulas, the R Project for Statistical Computing was used, a 

free software environment for statistical computing and graphics [74].  

 

Table 0.11 - Fuzzy and nonfuzzy criteria weights 

Criteria Fuzzy Weights 
Defuzzified  

Weights 

Nonfuzzy 
Normalized 

Weights 

C1 𝑤ଵ = (0.1216; 0.1616; 0.2184) 𝑤ଵ = 0.167 𝑤ଵ = 0.166 

C2 𝑤ଶ = (0.0638; 0.0849; 0.1172) 𝑤ଶ = 0.089 𝑤ଶ = 0.088 

C3 𝑤ଷ = (0.0337; 0.0417; 0.0544) 𝑤ଷ = 0.043 𝑤ଷ = 0.043 

C4  𝑤ସ = (0.3800; 0.4610; 0.5234) 𝑤ସ = 0.455 𝑤ସ = 0.451 

C5  𝑤ହ = (0.1876; 0.2508; 0.3218) 𝑤ହ = 0.253 𝑤ହ = 0.252 

 

 

With the weights of the criteria properly calculated, the process of evaluating the 

alternatives begins. The environmental, economic, and social LCIA results, referring to the four 

different material alternatives for the building, are normalized. The final normalized values will 
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be considered as the weights of the alternative concerning each criterion. The normalization 

process results are presented in Table 3.12.  

 

Table 0.12 - Alternative weights concerning the particular criteria 

 A1 A2 A3 A4 

C1 𝑢ଵ
ଵ =0.081 𝑢ଵ

ଶ = 0.219 𝑢ଵ
ଷ = 0.204 𝑢ଵ

ସ = 0.496 

C2 𝑢ଶ
ଵ = 0.067 𝑢ଶ

ଶ = 0.143 𝑢ଶ
ଷ = 0.142 𝑢ଶ

ସ = 0.648 

C3 𝑢ଷ
ଵ = 0.839 𝑢ଷ

ଶ = 0.038 𝑢ଷ
ଷ = 0.037 𝑢ଷ

ସ = 0.086 

C4  𝑢ସ
ଵ = 0.261 𝑢ସ

ଶ = 0.225 𝑢ସ
ଷ = 0.265 𝑢ସ

ସ = 0.250 

C5 𝑢ହ
ଵ = 0.254 𝑢ହ

ଶ = 0.246 𝑢ହ
ଷ = 0.262 𝑢ହ

ସ = 0.238 

 

 With this, it is possible to create the final ranking of the alternatives utilizing Eq. (6) to 

calculate the alternatives' overall weights. As all the criteria chosen in this study indicate impact 

categories that should be minimized, the best alternative is the one with the lowest overall 

weight. The results are presented in Table 3.13.  

 

Table 0.13 - Overall weights of the alternatives 

Alternatives Overall weights Ranking 

A1 𝑢ଵ = 0.2372 3rd  

A2 𝑢ଶ = 0.2137 1st 

A3 𝑢ଷ = 0.2332 2nd 

A4  𝑢ସ = 0.3159 4th 

9.7.4 Interpretation 

The consistency ratio (CR) of the criteria pairwise comparison matrix is 0.062; that is, 

CR is less than 0.1. Hence, the study is considered consistent and acceptable. The consistency 

ratio of a matrix can be determined by using Eq. (8), as follows: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

(8) 

 

Where CI and RI are respectively the consistency index and the random index. 
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Alternative 2 is the most recommended for the analyzed building, corresponding to the 

alternative that achieves the best results concerning the sustainability criteria adopted. 

However, it is essential to note that the alternatives' overall ordering is strongly dependent on 

the criteria chosen. A sensitivity analysis is required to monitor the robustness of the preference 

ranking among the alternatives. The sensitivity analysis is carried out by gradual changes of the 

values of each criterion, whether global warming potential (C1), acidification potential (C2), 

eutrophication potential (C3), the life-cycle cost (C4), or fair wage potential (C5), and then 

observing the rank order due to such changes. In this way, the behavior of the ranking of 

alternatives could be monitored. Each criterion's weights were changed until reaching the null 

value, and then a new ranking was generated in each case. Table 3.14 shows these results.  

 

Table 0.14 - Sensitivity analysis results 

 C1 = null value C2 = null value 

Alternatives Overall weights Ranking Overall weights Ranking 

A1 𝑢ଵ = 0.2237 3rd  𝑢ଵ = 0.2313 3rd 

A2 𝑢ଶ = 0.1774 1st 𝑢ଶ = 0.2011 1st  

A3 𝑢ଷ = 0.1994 2nd  𝑢ଷ = 0.2207 2nd  

A4  𝑢ସ = 0.2336 4th 𝑢ସ = 0.2589 4th 

 C3 = null value C4 = null value 

Alternatives Overall weights Ranking Overall weights Ranking 

A1 𝑢ଵ = 0.2011 1st  𝑢ଵ = 0.1195 3rd  

A2 𝑢ଶ = 0.2120 2nd 𝑢ଶ = 0.1124 1st 

A3 𝑢ଷ = 0.2316 3rd 𝑢ଷ = 0.1139 2nd  

A4  𝑢ସ = 0.3122 4th  𝑢ସ = 0.2032 4th 

 C5 = null value 

Alternatives Overall weights Ranking 

A1 𝑢ଵ = 0.1731 3rd  

A2 𝑢ଶ = 0.1517 1st 

A3 𝑢ଷ = 0.1673 2nd 

A4  𝑢ସ = 0.2559 4th 
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The changes made to criteria 1, 2, 4, and 5 did not differ in the final choice of alternative 

(that is, alternative 2 remained the most suitable, followed by alternatives 3, 1, and 4, 

respectively), which increases the credibility of the decision made in this study. 

DISCUSSION 

The approach presented in this study has great potential to contribute to selecting 

materials for the construction industry. Specifically, an emphasis needs to be placed on the 

possibility of considering environmental, economic, and social aspects simultaneously when 

choosing construction materials. This is extremely important to achieve more sustainable goals 

in a sector proven to be responsible for causing significant environmental and socio-economic 

impacts. 

In order to use the BIM methodology as the primary tool in the data collection of the 

case study, quantitative indicators were chosen that could be related to the defined functional 

equivalent modeled in BIM. This, however, results in a limitation of the study, as there are only 

a few social indicators that can be related to the functional equivalent so far [37]. The social 

indicator was related only to an issue faced by workers; extension of the social indicators in the 

proposed framework is required in future works.  

Even though the case study covered a large part of the analyzed building's life cycle, it 

is also essential that future works encompass the construction materials production phase, from 

the extraction of raw materials to the manufacturing processes. This has not yet been possible 

due to the absence of reliable databases, mainly on the social impacts related to these processes 

[2]. The creation of national and international databases is necessary and urgent so that the 

decision-making in the materials choices happens even more consciously.  

The analysis of buildings' energy performance during the operation phase is a promising 

way to improve energy use. However, energy simulations performed in Autodesk Revit 

software may not provide accurate results, as the simulation may fail to capture some heat 

transfer paths from the building. To avoid this problem, a building of typical architecture was 

chosen in this paper's case study without using overhangs and side fins in the room divisions. 

The spaces' definition was made cautiously in Autodesk Revit before the modeling was 

transferred to the gbXML format.  

The normalized LCIA results of the case study were placed on the graphs shown in 

Figure 3.5. Applying the integrated proposal among LCSA, BIM, and MCDA, Alternative 2 
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was the most sustainable option for the analyzed building. It can be seen that this alternative is 

the best choice, based on the two different criteria (i.e., C1 and C2). However, if the decision-

makers had chosen to analyze the proposed building considering only criteria C3 and C4, 

Alternative 2 would have been considered the second option in the final ranking. Therefore, it 

is important to clearly define the impact categories by considering the objective of the analysis 

and the target audience. Ultimately, the use of fuzzy logic is strongly recommended as it helps 

deal with the subjectivity of choices made by decision-makers and, therefore, offers an avenue 

to handle a high degree of uncertainties. 

  

Figure 3.5 - Comparison of the four alternatives tested via LCSA 

 

CONCLUSION 

 This work presents an innovative proposal for integrating LCSA, BIM, and MCDA to 

determine the most sustainable choice of materials for construction projects. Although a 

significant number of studies have adopted the previously listed approaches, none have yet 

implemented them simultaneously to improve the construction material choice. A case study of 
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a residential building was evaluated to present the application of the developed framework. It 

is worth mentioning that this same framework can be easily applied in other construction 

projects with different impact categories by expanding the impacts database. 

In the case study presented, four different material lists were tested for the same building 

to decide which alternative would be the most sustainable. Among the selected alternatives, a 

variation of up to 509.97% in global warming potential was found through the LCSA-BIM-

MCDA integration. Also, a 16.11% variation in the energy cost for lighting and 22.80% 

variation in the energy cost for HVAC were detected. These variations can be even more 

significant when testing a greater number of material alternatives. The framework proposed 

allows construction professionals to quickly conduct a comparison between the alternatives. 

In this work, the project was modeled for a proposed building, which brings certain 

limitations to the study compared to a real construction project, such as the impossibility of 

collecting data from the region's inhabitants and the need to make some assumptions on the 

construction methods used. Also, only one social impact category was assessed in the case 

study, which is a significant drawback of this work. These limitations must be considered in the 

interpretation phase, but this was deemed to be acceptable for this work since the purpose was 

to prove the framework's usability. There is also great difficulty in obtaining all the data related 

to the building, covering the environmental, economic, and social spheres. This study's future 

direction is to explore the use of the proposed framework in real buildings, identifying effective 

ways to weigh the various impacts and accurately measure the qualitative aspects. 
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Abstract: The Life Cycle Sustainability Assessment (LCSA) methodology represents a 

possible solution to meet the requirements of a sustainable built environment by adopting a 

lifecycle perspective and simultaneously accounting for all sustainability pillars. Nevertheless, 

the LCSA application is typically focused on the early design stages of a building and does not 

consider real-time information, representing a static LCSA approach. Therefore, based on the 

results derived from a systematic literature review on this subject, this paper proposes a 

comprehensive framework that demonstrates how the integration of LCSA with Digital Twin 

and Blockchain can enhance building sustainability. A platform based on Smart Contracts is 

presented to facilitate the integration of these technologies. A case study is also conducted to 

validate the framework's applicability and showcase its benefits in achieving sustainable 

outcomes in the built environment. This research contributes to improving dynamic impact 

assessments and achieving sustainability, thus fostering sustainable practices in construction 

projects. 

 

Keywords: 

BIM; Blockchain; Digital Twin; Dynamic Analysis; Life Cycle Sustainability Assessment; 

Sustainable Construction. 

 INTRODUCTION 

Life Cycle Sustainability Assessment (LCSA) emerged as a thorough methodology 

based on the life cycle thinking approach. This approach takes into account the fact that all 

phases of a product's life cycle have an impact on the environment and have socio-economic 

repercussions. All these issues, in turn, need to be assessed in order to achieve sustainability 

[1]. The LCSA methodology is the result of combining three key processes: i) Life Cycle 
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Assessment (LCA), related to the environmental pillar of sustainability; ii) Life Cycle Costing 

(LCC), associated with the economic pillar; and iii) Social Life Cycle Assessment (S-LCA), 

linked to the social pillar. 

In recent years, researchers have started emphasizing the importance of incorporating 

dynamic aspects into building sustainability assessments, which involves considering time-

dependent factors and real-time impact scores to assess the impacts across different time 

horizons [2]. This topic still receives little attention in the literature, particularly when it comes 

to research that validates this concept in building case studies. Considering the specific 

application of LCA, thus assessing only environmental aspects, some efforts have already been 

presented in the literature with the aim of transforming this application into a dynamic LCA. 

This emerging field, Dynamic Life Cycle Assessment (DLCA), aims to provide a more 

comprehensive and accurate understanding of the environmental implications over time. 

Yet, while the concept of DLCA holds significant potential for advancing the 

understanding of the dynamic nature of environmental impacts, there is a notable gap in the 

literature regarding the standardization of this application and the extrapolation to a dynamic 

LCSA, considering the three pillars of sustainability. In this context, tools and technology that 

facilitate the life-cycle data collection and real-time data visualization needed to produce in-

depth conclusions during the building sustainability assessment seem pertinent. 

Building Information Modeling (BIM) might be one of the most apparent solutions in 

this regard. BIM is a widely used methodology in the construction industry and refers to a 

working procedure based on a digital representation of the facility. Besides, BIM incorporates 

all stakeholders into the workflow and facilitates data access along the project's life cycle [3]. 

Therefore, a BIM model consists of a 3-D digital model containing both geometric and semantic 

data of building elements. However, the current state of BIM lacks semantic completeness in 

managing dynamic data and is considered incompatible with the Internet of Things (IoT) 

integration, a tough challenge currently discussed in the literature [4].  

In order to deal with this issue, research has focused on synchronizing the cyber-

physical bi-directional data flow between the digital model and the existing building, making 

use of the Digital Twin (DT) paradigm. Conceptually, a DT is a virtual representation of an 

object or system, serving as the real-time digital counterpart of the asset during its life cycle 

[5]. From the construction standpoint, several DT applications have been investigated under the 

BIM field, understanding a construction DT as a digital prototype with increased detail and 

precision and using the BIM model as the primary data source to develop the DT [4].  
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Unfortunately, this data aggregation throughout the facility’s life cycle can generate a 

security risk due to the presence of multiple parties and sources. Traceability, confidentiality, 

and security issues may arise as obstacles while developing a construction DT. From this 

perspective, applying blockchain technology can provide a plausible avenue for dealing with 

these issues. Blockchain is nowadays the most prominent Distributed Ledger Technology 

(DLT) in the market [6]. DLT is a transaction system that runs on a distributed peer-to-peer 

(P2P) network and does not require a central authority to arbitrate such transactions [7]. In turn, 

a blockchain is a DLT that represents a database with interconnected blocks of data 

cryptographically protected against tampering [8], in which the data integrity is reached through 

the process of hashing [7]. Regarding the projects associated with the built environment, 

blockchain can offer a tamper-proof solution throughout the information supervision of built 

assets [9]. 

In this vein, one of the critical objectives of this research is to explore how the 

knowledge gained from the individual application of LCSA, DT, and blockchain can be 

harmonized into an integrative solution for dynamic building assessments. Despite significant 

advancements in each of these domains, there is still a critical need to bridge the gap between 

theory and practical implementation within the construction industry. Therefore, this study 

begins with a systematic literature review, presenting a comprehensive bibliometric analysis 

and defining the state-of-the-art of LCSA, DT and blockchain in construction. Particularly, this 

paper intends to answer the following research questions (RQ): 

(RQ1) Is it feasible to extrapolate the discussion on Building LCSA, typically focused 

exclusively on the early design stages and not considering real-time information, via applying 

different levels of Digital Twins throughout the entire life cycle of the building and creating a 

dynamic approach? 

(RQ2) How does integrating blockchain and Digital Twin contribute to enhancing the 

precision, reliability, and comprehensiveness of dynamic sustainability assessments in the built 

environment, particularly regarding ensuring data security and user privacy? 

Based on the conclusions derived from the systematic review, an integrative framework 

is proposed to showcase how this integration can enhance sustainability in construction and 

advance research in this field. A proof of concept is then presented to validate the framework 

and showcase its applicability, highlighting the innovative potential of combining LCSA, DT, 

and blockchain within the construction industry. By analyzing the challenges encountered in 

the framework application, a platform based on Smart Contracts is also proposed to integrate 

the technologies, with a semantic architecture being illustrated. 
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 RESEARCH METHODS 

This study systematically explores LCSA, DT, and blockchain within the construction 

industry, aiming to culminate in an integrative framework. The research methods, illustrated in 

Figure 9.1, span three distinct phases: systematic literature review, framework development 

and proof of concept.  

The study starts with a systematic literature review based on the PRISMA guidelines 

[10] to achieve the findings needed to answer the research questions posed herein. In this phase, 

a scientific evolution analysis is proposed based on a bibliometric and text data mining 

exploration to grasp the progression of the concepts over time. Then, a meticulous examination 

to delineate the current state-of-the-art in LCSA, DT, and blockchain within the construction 

industry is carried out, serving as the foundation for the subsequent phases. 

 

Figure 9.1 - Research methods proposed for this study 
 

Scopus was chosen as the preferred search database. The study intends to provide 

quantitative and qualitative assessments of the research trends and key publications in the field, 

in addition to identifying existing gaps in the literature. Firstly, the search considered LCSA, 

DT, and blockchain being used together. After that, the study was conducted by searching for 

the chosen keywords related to each concept separately in article titles and abstracts. The 

keywords were combined with logical operators AND, OR, and NOT. The data was collected 

in September 2023. Table 9.1 shows the different interactions carried out in this study. 

The first key objective of the review was to evaluate current research trends and 

establish the status of LCSA, DT and blockchain within the context of sustainable construction. 

Therefore, all interactions presented in Table 9.1 contained critical terms related to 
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sustainability. Then, the documents were screened and filtered, considering the overall 

relevance of the papers. Relevance criteria involved the inclusion of journal articles and review 

articles while excluding books, book chapters, and conference papers. Furthermore, to maintain 

uniformity in language, the search was restricted to documents in English. Figure 9.2 illustrates 

the steps of the systematic literature review conducted in this study based on the PRISMA 

guidelines. 

 
Table 0.1 - Keywords used in each interaction of the literature review search 

Interactions in 
Scopus and Web of 
Science databases 

Keywords used 

 

First interaction 

("Building" OR 
“Construction”) AND 
("LCSA" OR "Life Cycle 
Sustainability Assessment" OR 
"TBL" OR “Triple bottom 
line” OR (“Environmental” 
AND “Economic” AND 
“Social”)) AND ("Digital 
Twin" OR “data-driven 
simulation” OR “cyber-
physical”) AND ("Blockchain" 
OR “Distributed Ledger 
Technology” OR “DLT”)  

Second interaction 

("Building" OR 
“Construction”) AND 
("LCSA" OR "Life Cycle 
Sustainability Assessment" OR 
"TBL" OR “Triple bottom 
line” OR (“Environmental” 
AND “Economic” AND 
“Social”))  

Third interaction 

("Building" OR 
“Construction”) AND 
("Digital Twin" OR “data-
driven simulation” OR “cyber-
physical”) AND 
(“Sustainable” OR 
“Sustainability”)  

Fourth interaction 

("Building" OR 
“Construction”) AND 
("Blockchain" OR “Distributed 
Ledger Technology” OR 
“DLT”) AND (“Sustainable” 
OR “Sustainability”) 
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The first key objective of the review was to evaluate current research trends and 

establish the status of LCSA, DT and blockchain within the context of sustainable construction.  

Therefore, all interactions presented in Table 9.1 contained critical terms related to 

sustainability. Then, the documents were screened and filtered, considering the overall 

relevance of the papers. Relevance criteria involved the inclusion of journal articles and review 

articles while excluding books, book chapters, and conference papers. Furthermore, to maintain 

uniformity in language, the search was restricted to documents in English. Figure 9.2 illustrates 

the steps of the systematic literature review conducted in this study based on the PRISMA 

guidelines. 

 

Figure 9.2 - PRISMA-based diagram for the systematic literature review conducted in this study 
 

The culmination of the systematic review sets the stage for the second phase of the 

methodology proposed in this study, related to the framework development. In this phase,  a 

comprehensive framework is proposed to seamlessly integrate LCSA, DT, and blockchain 

within the construction domain. In the context of this study, the integration proposed is a 

multifaceted endeavor. To ensure that this integration is both practical and comprehensive, the 
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framework is designed to provide a structured and all-encompassing approach, allowing 

practitioners to consider every critical facet of these broad concepts.  

The final phase is related to the Proof of Concept of the framework developed herein. 

This phase will start with creating a 3D model that emulates real-world construction scenarios, 

enabling practical testing of the framework. The main goal is to use rigorous testing to assess 

the framework's effectiveness, potential for enhancing sustainability, and adaptability to diverse 

scenarios. Ultimately, the discussion of this study’s results intends to consider a forward-

looking perspective, identifying areas for future exploration, refinement, and innovation. All 

these phases will be discussed in the following sections of this paper. 

 LITERATURE REVIEW 

9.11.1 Scientific evolution analysis 

A bibliometric analysis was conducted (i) separately on each approach (LCSA, DT, 

blockchain) and (ii) accumulatively via the use of these concepts together in the same study. 

The decision to search for studies that include at least one of the three approaches is due to the 

understanding that the advancements in each topic can be extrapolated and combined to achieve 

the objectives of this paper. The results of this analysis are used to show the current research 

stage on these concepts. 

The papers filtered in the literature search were classified via a bibliometric analysis 

using text data mining and clustering. For this, the authors utilized specialized software, namely 

VOSViewer (version 1.6.18), developed by researchers from Leiden University in Sweden [11]. 

VOSviewer uses the VOS mapping technique to construct a bibliometric map, where VOS 

stands for Visualisation of Similarities [12]. The maps created based on the co-occurrence of 

terms among the papers found in the second, third, and fourth interactions, related to applying 

the methodologies with a sustainability focus, are shown respectively in Figures 9.3, 9.4, and 

9.5. The distance between two keywords in these figures indicates their relatedness. The closer 

two terms are located, the stronger their relatedness. 
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Figure 9.3 - A map based on the co-occurrence of terms in scientific papers related to Building 
LCSA, divided into three clusters. 

 

 

Figure 9.4 - A map based on the co-occurrence of terms in scientific papers related to Building 
Digital Twin, divided into five clusters. 
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Figure 9.5 - A map based on the co-occurrence of terms in scientific papers related to 
Blockchain applied in the construction industry, divided into five clusters. 

 

Although many articles mention the application of LCSA, it is essential to note that 

many of these publications tend to be limited in scope, predominantly addressing environmental 

assessments without fully encompassing all three pillars of sustainability, as indicated by the 

green cluster in Figure 9.3. Besides, several publications focus on energy analysis and carbon 

emission, as shown in the blue cluster. Finally, papers that delve deeper into a triple-bottom-

line approach typically emerge from literature review searches or the development of 

conceptual frameworks. This approach aims to mitigate the ongoing challenges of harmonizing 

LCA, LCC, and S-LCA. This specific focus can be observed within the red cluster. 

In turn, an evident correlation with the BIM methodology emerges regarding the use of 

DT in the construction industry. Many papers utilize a BIM-based DT model in their analyses, 

as evidenced in the blue cluster in Figure 9.4. Also, it was possible to derive two critical areas 

of DT application in the construction industry. On the one hand, numerous publications 

concentrate on applying DTs for energy analysis, showcasing their relevance to sustainability 

outcomes. On the other hand, another significant cluster underscores the adoption of DTs for 

building maintenance, emphasizing their role in optimizing facility operations. This application 

is closely linked to information and control systems, which are crucial for leveraging DTs to 

enhance the sustainability of physical facilities. Notably, some articles have begun to address 

this need by discussing the integration of BIM-based DTs with blockchain, highlighted in the 

yellow cluster. 
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 Ultimately, Figure 9.5 is related to the application of blockchain in the construction 

industry. Notably, many papers in this interaction also involve the application of BIM-based 

DTs, reaffirming the potential benefits of this integration in construction projects, as shown in 

blue. Besides, four more clusters were identified as the key research areas on using blockchain 

to advance sustainability: smart cities and energy analysis; supply chain, particularly in terms 

of transparency and traceability; circular economy; and the use of blockchain to solve privacy 

issues, acknowledging the importance of data security and user confidentiality.   

9.11.2 Definition of the state-of-the-art of LCSA, Digital Twin, and Blockchain in 

construction 

After conducting a scientific evolution analysis, the documents were filtered for further 

careful investigation. This step aimed to find the most relevant works to assist in developing an 

integrative framework. The most significant articles for each topic that have been reviewed are 

discussed in the following subsections. 

9.11.2.1 Life Cycle Sustainability Assessment 

 The Life Cycle Sustainability Assessment (LCSA) is an interdisciplinary framework 

that simultaneously evaluates the impacts associated with products and processes from an 

environmental, social, and economic perspective [13]. The techniques that form the LCSA 

framework (i.e., LCA, LCC, and S-LCA) follow the same methodological structure based on 

the ISO 14040 standard. This methodological structure is divided into four stages: Goal and 

Scope definition, Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA), and 

Interpretation [14]. 

 Although the three life-cycle methodologies have similarities, significant differences in 

each technique have been identified in the literature [15]. For instance, not all the economic and 

social indicators can be estimated as a function of the functional unit of the study, resulting in 

a significant drawback in the interpretation stage [16]. In this vein, numerous issues concerning 

the complete application of LCSA remain unanswered in the literature, and many studies 

continue to execute only a portion of the evaluation. This is primarily due to the varying 

maturity levels of the three sustainability pillars, which impedes the widespread adoption of 

LCSA.  

 Regarding the use of LCSA as a decision-making technique in the construction industry, 

researchers have applied this methodology mainly during the early stages of a building design 
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[15,17–19]. A recent study introduced an innovative LCSA model designed for integration into 

the design phase of new building projects and energy refurbishments for existing buildings [20]. 

The authors further developed a novel formulation and weighting method to derive a final 

LCSA index, facilitating a holistic assessment of design scenarios and considering the three 

pillars of sustainability. The study also innovatively integrates Machine Learning (ML) 

techniques into the optimization process, enhancing the efficiency of design assessments while 

upholding their precision. 

 Nevertheless, when considering using this methodology in different stages of the 

building's life cycle, a new challenge emerges related to the need for more temporal information 

in the assessments. Notably, the current LCSA methods take a stagnant approach that fails to 

consider dynamic factors during the building life cycle, such as material deterioration, varying 

energy consumption, and technology up-gradation, resulting in inaccurate sustainability 

assessments [21]. In this context, the data inventory can be considered the most sensitive and 

challenging step of an LCSA application since it leads to the creation of a model that should 

represent, as accurately as possible, all the exchanges between the distinct phases of a process 

[22]. So far, the need for more impact data sources adapted to the specific requirements of a 

building project has been seen in the literature [15]. Besides, it has been noted that impact 

assessments are typically based on data from historical series, which hinders the use of LCSA 

for rapid corrective actions on a project.  

 Therefore, it becomes necessary to consider a dynamic LCSA approach in which a 

dynamic life cycle inventory (D-LCI) is considered, along with time-dependent characterization 

factors, to assess the impacts by considering real-time impact scores for any time horizon [23]. 

This topic still receives little attention in the literature, particularly when it comes to research 

that validates this concept in building case studies. However, considering the specific 

application of LCA, thus assessing only environmental aspects, some efforts were already 

presented in the literature with the aim of transforming this application into a dynamic LCA.  

 For example, Ferrari et al. [24] proposed the integration of the life cycle inventory (LCI) 

stage with the Enterprise Resource Planning (ERP) system to overcome some limitations in 

LCA inventory data. The authors highlighted that many companies already have part of the 

primary inventory data in an ERP system, thus making it possible to dynamize LCA 

applications by exploiting the data collected by ERP. This idea was discussed with a focus on 

manufacturing companies and implemented in a case study related to the environmental 

monitoring needs of a ceramic tile manufacturer. 
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 Recent works started to discuss a dynamic LCA approach in the construction domain 

but with specific and limited goals. Ramon et al. [25] analyzed the operational phase in building 

LCA assessments by employing a dynamic energy consumption and electricity mix approach 

and integrating future climate model data and dynamic energy simulations. In turn, 

Apostolopoulos et al. [26] evaluated a set of energy-efficient retrofit measures in a residential 

case study in Greece. In this study, carbon emissions, primary energy needs, and lifecycle costs 

were analyzed. The authors considered that a Dynamic-LCA approach was implemented due 

to the use of a specific building energy variable, incorporating time-dependent features in the 

context of temporal and spatial variations. 

 In a notable case study centered in Quebec, Canada, the authors investigated the 

increasing utilization of wood in non-residential buildings through LCA [27]. This study 

compared a conventional static LCA, which adopts fixed time horizons for assessing 

environmental impacts, with a dynamic approach using the DynCO2 tool. The findings 

underline the importance of considering both short-term and long-term consequences, as 

conventional static LCAs may provide incomplete insights, especially when dealing with 

elementary flows with varying values. Still, this study did not apply a dynamic life-cycle 

inventory. The analysis was considered dynamic due to the use of a dynamic characterization 

method during the LCIA phase.  

 Other recent publications presented different frameworks for a dynamic LCSA 

application but with limited advances in this field. Francis and Thomas [21] developed a 

methodological framework that allows practitioners to set desired values for material use, 

material replacement alternatives, energy mix, and water recycling percentage to evaluate the 

building impacts of the selected combination of values. It can be observed that the authors 

considered more environmental indicators as compared to economic and social ones. Besides, 

the framework continues to resemble the traditional LCSA application, allowing the 

comparison of several alternatives from manual changes in the system. 

 Another point that deserves attention is that although the number of lifecycle approaches 

is constantly growing in construction, the number of Environmental-LCA applications is still 

much more significant than LCC and S-LCA studies. Besides, previous thorough literature 

reviews have revealed that most investigations over the last 20 years focus on the impacts 

generated during the extraction and manufacturing stages of building materials and 

components, moderately or infrequently considering the other building life cycle stages 

specified in international standards (i.e., construction installation, use, maintenance, repair, 
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demolition, processing, disposal, recycling, etc.) [28]. It reveals another research gap that needs 

to be solved in the literature. 

 In light of the above, it becomes evident that the foundational realm of LCA, which has 

evolved in tandem with D-LCA and LCSA [21], must undergo further expansion to 

accommodate the dynamic influences and intricate interrelationships among the three 

sustainability pillars. This evolution can undoubtedly contribute to the progression and 

maturation of research in this domain, fostering a more holistic understanding of sustainability 

in construction and the built environment. 

9.11.2.2 Digital Twin (DT) 

A DT represents a collection of realistic models that intend to simulate the physical 

asset's real-time attributes, conditions, and behavior throughout its existence [29]. Particularly, 

communication between virtual models and physical assets in bi-directional coordination 

allows for changes in one environment to be reflected in the other and vice versa. This idea has 

been employed in various sectors and businesses, including construction. Unlike BIM, which 

focuses on centralizing data and information and is typically used as a single digital shadow 

[30], a building DT can provide timely optimization suggestions by mirroring the building's 

lifecycle and current status [31]. In this context, DTs of constructed assets can present different 

complexity levels from design to handover, depending on the availability of data and the 

model's sophistication [32]. 

 Several contributions of using DT in the construction sector are discussed in the 

literature, such as the real-time building's remote monitoring and management and the 

maintenance and planning estimation [33]. A building DT is considered a contextual model of 

an entire building, bringing together third-party data and resulting in a dynamic digital replica 

that can be used to solve a wide range of issues [34]. The benefits of using a building DT vary 

from real-time data visualization to continuous asset monitoring and the development of self-

learning capabilities [35]. However, a closer look at the literature reveals some gaps and 

shortcomings. Although the DT concept already provides solutions to current problems in 

building projects, research on this subject continues mainly at a theoretical level. Several 

articles that apply a building DT in a case study upgraded existing modules of a BIM model to 

a DT system without considering real-time data, thus only partially realizing a building DT 

[31]. 

 Besides, the literature shows that the use of virtual models as a platform for continuously 

tracking building components during the operation and maintenance phases is underutilized 

despite the opportunities for building monitoring and control [36]. Previous methods for 
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integrating virtual models and physical construction have primarily focused on resource and 

activity monitoring during the construction stage, as well as documentation of the as-built.  

 State-of-the-art literature on DT proves that the proliferation of the concept associated 

with the built environment and the construction industry has not been primarily driven by the 

need to achieve sustainable outcomes in this sector, with limited applications regarding 

sustainability assessments based on a triple-bottom-line approach. Notably, a recent study with 

a hybrid approach involving literature review, expert interviews, and modeling techniques 

stated that the relationship between DT and sustainable success remains insufficiently studied 

in the literature regarding the building and construction sectors [37]. There are several barriers 

to implementing DT in this context, such as interoperability issues, difficulty in protecting 

intellectual property, data uncertainties, connectivity, and cultural inertia. 

 However, as the demand for sustainable practices grows, research has started to pivot in 

this direction. Several studies have begun to outline specific goals for employing  BIM-based 

DTs to achieve sustainability within construction. For instance, some efforts have focused on 

maximizing the recycling and reuse of demolition waste [38], while others have explored the 

development of Zero Energy Districts [39]. These studies represent critical steps toward 

integrating DT technology with sustainability principles, aligning the construction industry with 

the broader sustainability agenda. 

 Nonetheless, it is observed that the application intended to improve the LCSA 

methodology via DT implementation is still briefly addressed in the literature. Tagliabue et al. 

[40] have discussed the application of a BIM-based DT for sustainability assessments. Still, 

their case study primarily pertained to the design and operational phases, with a particular focus 

on energy efficiency. As a result, it did not encompass all sustainability pillars or consider the 

full array of parameters associated with sustainable construction. This gap between DT and 

comprehensive LCSA integration in the context of the construction industry points to an avenue 

for further research and innovation. 

9.11.2.3 Blockchain 

Blockchain is an innovative information technology that ensures decentralization, 

auditability, security, and smart execution in a process. At its core, a blockchain comprises 

consecutively linked blocks, each containing a pointer to the previous block, a timestamp, and 

a collection of data [41], and this structure guarantees that any data tampering is easily identified 

[42]. Briefly, the blockchain process collects the broadcasts of transactions into blocks, which 

are then hashed and receive a timestamp [43]. Hash is the name used to identify a cryptographic 

function that encodes data to create a unique and fixed-length string in the chain [44].  
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 Due to these cryptographic functions, it is practically impossible to carry out the 

opposite process and get the original data from an already-formed hash, which ensures data 

authenticity and security [43]. Furthermore, the timestamp created in this process provides 

reliable evidence that the data must have existed at that moment to get into that specific hash 

[45], thus further enhancing the security and auditability of the blockchain. In turn, blockchain 

excludes the need for a trusted third party to validate transactions due to its decentralization 

characteristic, resulting in a delegation of authority among network contributors that improves 

the service trust [46].  

 In the blockchain domain, smart contracts play a pivotal role. They are used as 

agreements between parties expressed in the form of computer code [47]. A smart contract can 

automatically self-execute processes based on satisfying preset conditions [48], in addition to 

determining the content, norms, rights, and obligations of each member of the chain [49]. When 

considering applying blockchain technology to projects associated with the built environment, 

smart contracts seem to be a possible solution to the slow, fragile, and expensive transactions 

observed in this context [50].  

 Unfortunately, it is noteworthy that the construction industry has historically lagged 

behind in adopting information technology within its processes [51]. Consequently, the 

application of blockchain technology in the construction sector remains predominantly a 

theoretical discussion. Despite its theoretical underpinnings, the potential for blockchain to 

revolutionize the construction industry by streamlining transactions and enhancing security 

cannot be underestimated. It is essential to recognize that the adoption of blockchain in the 

construction industry faces challenges related to technical expertise, interoperability, and cost 

[52]. However, as the technology matures and awareness grows, more practical applications are 

expected to emerge, fostering a profound transformation in the built environment. 

9.11.3 Preliminary Integration Attempts Presented in the Literature 

The systematic review of the literature revealed a scarcity of studies that effectively 

leverage DTs to enhance all three pillars of sustainability from a life-cycle perspective. 

Moreover, the practical application of blockchain technology in construction projects remains 

theoretical mainly, with limited case studies available within the construction industry. 

However, some preliminary integration attempts presented in the literature are worth analyzing. 
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Previous studies have emphasized the benefits of integrating BIM and blockchain [53–

55]. While highly effective in managing project information, the BIM methodology lacks 

certain features such as confidentiality, traceability, provenance tracking, non-repudiation, and 

data ownership. In this vein, by integrating BIM and blockchain, various challenges inherent to 

the construction project lifecycle can be addressed [56]. For example, a blockchain platform 

can alleviate project delays resulting from BIM model discrepancies or stakeholder conflicts 

[57]. Nonetheless, several technical barriers are linked to this proposal, such as the necessity 

for greater computational power to add a BIM model to a blockchain [58].  

Considering a BIM model as the primary data source for constructing a building DT, it 

becomes evident that integrating blockchain technology into DT is a logical next step. Several 

frameworks have been proposed to satisfactorily apply this integration, some focusing on 

project management [59] and others on manufacturing systems [60]. In the construction 

industry context, two prominent blockchain platforms available in the market, Ethereum and 

Hyperledger Fabric, can be harnessed for this purpose [61]. 

In turn, the integration of BIM and Environmental LCA has gained substantial traction 

in the literature, and different ‘LCA Profiles’ have emerged, establishing associations between 

LCA processes and construction materials or components, often represented as BIM objects 

[62]. BIM's role in this context is linked to an information aggregator and context provider, 

offering a rich dataset to support the LCA analysis. Therefore, LCA tools and plug-ins are 

pivotal in connecting the information sourced from BIM with the corresponding LCA processes 

within the databases [63]. Still, while promising, recent studies have shown that this integration 

has sometimes led to inaccurate results within the current designers' workflow [64,65]. This 

conclusion underscores the critical need for analysis tools that seamlessly align with the 

dynamic nature of a building project.  

In a parallel vein, exploring synergies between LCSA and BIM-based DTs promises to 

revolutionize sustainability practices in the construction industry. As discussed in a recent study 

by Boje et al. [62], a fully monitored construction project could help track events in real time 

and provide inputs for a dynamic sustainability assessment, but this lies in the scope of a DT 

model and not a BIM model. Therefore, the authors introduced a streamlined LCSA of an office 

building with a limited scope to showcase the complementary roles of BIM and DT. However, 

it is essential to note that the utilization of BIM and DT in this case study was primarily 

restricted to environmental LCA during modules A1, A2, A3 (product stages), B6 (operational 

energy), and B7 (operational water). This limited application did not fully address the potential 
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of LCSA-DT integration, leaving room for further exploration and development in this evolving 

field. 

Regarding the use of blockchain, Zhao et al. [59] highlighted a significant challenge 

concerning the current levels of blockchain technology employed in the literature, which may 

not meet the requirements for DTs applied in construction management. Several drawbacks 

arise, such as high latency and performance loss due to the large amount of transaction data 

associated with a construction project. To address this, the authors proposed a framework to 

enhance collaboration and communication among project stakeholders, mainly when internet 

connections are unstable, focusing specifically on project management. 

Moreover, integrating blockchain technology in life-cycle approaches can significantly 

enhance data reliability and trustworthiness, enabling better tracking of a building's life-cycle 

performance. For example, when combined with IoT sensors for automatically collecting data, 

blockchain can track a product and record its footprint along its entire value chain [66]. 

Additionally, all inventory data can be stored, processed, and validated on a blockchain 

platform [67], potentially improving the quality of LCSA inventories and enhancing the 

sustainability decision-making process for construction projects. 

 FRAMEWORK DEVELOPMENT 

This section introduces the integrative framework presented in this work, as illustrated 

in Figure 9.6. The framework's primary focus lies in integrating a building DT with blockchain 

technology to enhance the application of the LCSA methodology in the construction industry, 

thereby advancing sustainability goals. The proposed framework emphasizes the dynamic 

nature of LCSA, to be conducted across different phases of a building's life cycle with real-time 

data derived from a digital building twin. It is also essential to recognize that the digital building 

model's complexity will evolve, adapting to the available data at different stages of the 

building's existence. By incorporating blockchain technology, the framework not only ensures 

the integrity, traceability, and transparency of data but also revolutionizes the collaboration and 

data exchange processes among diverse stakeholders. 

Many researchers advocate for applying life cycle techniques during the building design 

stage, recognizing the significant influence of stakeholders in these early phases, which 

diminishes as the project approaches completion. However, this application is inherently 

hindered by the dearth of data available at the inception of the project life cycle. The workflow 
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articulated in this study presents a dynamic approach, enabling LCSA to be executed throughout 

various building phases, supported by additional technologies. This innovative approach treats 

LCSA as an iterative process that evolves alongside the physical building. In this context, the 

LCSA results in the pre-construction phase play a pivotal role in enhancing design decisions. 

Subsequently, the digital model continuously evolves by assimilating real-time data, allowing 

for ongoing LCSAs that support the building's construction, renovation, and maintenance. 

 

Figure 9.6 - The integration framework proposed in this study 
 

In contrast to conventional LCSA with its fixed time horizon, the proposed framework 

proposes a dynamic LCSA approach adaptable to different stages of the building's life cycle. 

While retaining the fundamental methodological structure based on the ISO 14040 standard, it 

emphasizes the importance of clearly and accurately defining the goal and scope of LCSA at 

each building stage. This encompasses elements like functional unit, system boundary, target 

audience, assumptions, and limitations, ensuring that the selected impact categories align with 

the specific sustainability objectives of each building stage. 

The digital model is established and constantly updated in the pre-construction phase as 

design decisions are made. This descriptive DT, driven by 3D-BIM models, incorporates 

detailed information about construction materials, aiding in the early-stage conceptualization 

and sustainable material choices. During construction, real-time data is collected and 

seamlessly integrated into the digital model, establishing a bidirectional connection between 

the digital and physical assets. This synchronization empowers the utilization of real-time data 
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in LCSA, elevating the quality of decision-making and creating a construction data repository 

for future projects. Furthermore, it facilitates construction simulations, virtual job site planning, 

and safety planning, enhancing sustainability across all three pillars. 

In the post-construction phase, the DT model receives updates encompassing static data 

from various sources, including impact databases and data repositories from prior projects. 

These updates are complemented by dynamic data IoT sensors. Integrating artificial 

intelligence (AI) and machine learning is also encouraged, driving building assessments to a 

level of autonomy and connectivity, significantly reducing human intervention while 

maintaining sustainability goals. The DT's role in decision-making spans various domains, from 

material selection to energy efficiency and thermal comfort.  

The digital twin's role in decision-making is extensive, offering benefits in material 

selection, energy efficiency, and thermal comfort. While its application during pre-construction 

and construction stages remains an emerging topic, the framework envisions using digital twins 

as quality control tools in design, fabrication, and assembly processes, thus improving 

sustainability outcomes. 

The framework also proposes using blockchain technology to record all design changes, 

addressing the long-standing challenge of absent chronological records in traditional building 

models. Blockchain synchronization promises transparency, security, and streamlined 

collaboration among diverse professionals in the construction project. Smart contracts within 

blockchain technology guarantee transaction security without imposing extensive knowledge 

or workflow alterations on stakeholders. This innovative approach delivers benefits across all 

stages of a building's life cycle, addressing concerns associated with inspection records and 

operations during fabrication. 

By employing blockchain for digital fabrication drawing production, real-time data 

synchronization, and data record tracking, transparency and collaboration within the 

construction process are significantly enhanced. Furthermore, blockchain technology can 

establish efficient connections among professionals and offer innovative solutions to external 

stakeholders, culminating in heightened value creation. 

 Finally, the LCSA interpretation step should assist the stakeholders in the decision-

making process related to each stage of the building life cycle. The decision-makers must be 

able to select the optimum sustainable choice for the building based on the three pillars of 

sustainability. In these terms, utilizing multi-criteria decision-making (MCDM) methods to 

facilitate the decision and performing a Sensitivity Analysis during interpretation is 
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encouraged, as it allows the LCSA practitioner to compare all possibilities highlighted as 

suitable for the building during the previous LCSA steps. 

9.12.1 Demonstration of the proposed framework for Proof of Concept 

A case study is examined to validate the applicability of the proposed framework. It was 

considered a building of typical architecture in the southeast of Brazil to present a discussion 

representative of the Brazilian construction industry. The analyzed building is a 17-unit 

residential building composed of 6 stories (ground floor, four floors, and a roof) in Rio de 

Janeiro, Brazil. The baseline 3D model was modeled in Autodesk Revit 2023, with data 

integrated and extracted using Dynamo as the visual programming language. The whole process 

was developed on the Microsoft Windows 11 operating system, using an Intel core i7 processor 

at 2.3 GHz and 32GB of RAM. 

This case study serves as a vital component in developing and validating the integrative 

framework. The primary objective of this case study is not to comprehensively apply the entire 

framework across all stages of a building's life cycle. Instead, the focus is on testing and 

validating specific aspects, primarily within the pre-construction phase, using available tools in 

the market. The rationale behind this approach is to understand the practical challenges, 

feasibility, and functionality of integrating LCSA, DT, and blockchain technologies within the 

critical context of a construction project. Focusing on the pre-construction phase, where 

significant sustainability decisions are made, materials and methods are selected, and the 

foundation for a building's life cycle is laid, this case study allows for a targeted assessment of 

the framework's effectiveness. Ultimately, it acknowledges that while the ultimate goal is to 

apply the framework across all stages of a building's life cycle, a phased approach to validation 

is crucial. 

The process begins with developing a detailed 3D model using specialized Autodesk 

Revit software. This BIM model acts as the primary data source, creating the foundational DT 

while offering a comprehensive building representation. It includes physical attributes, 

materials, systems, and design elements. Subsequently, a BIM-based DT is crafted to provide 

a real-time virtual replica of the physical building. This DT serves as the dynamic element in 

the process, continuously engaging with the actual building throughout its lifecycle. 

With the insertion of lifecycle data in the 3D building model, the first LCSA application 

occurs, following all recommendations proposed by ISO 14040 and 14044 standards. The 
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LCSA scope during the pre-construction stage is to determine the best building elements and 

methods among a pre-defined list, considering environmental, economic, and social impacts. 

In this study, the functional unit of the study corresponds to all architectural materials and 

assemblies for the whole building, including all materials required for manufacturing and use, 

such as sealants, adhesives, coatings, and finishing. Besides, the definition of the functional 

unit considers that it is related to a multi-family residential building with a service life of 60 

years. In this work, a 1% cut-off factor by mass was considered to determine which materials 

to exclude from the assessment.  

Furthermore, a cradle-to-grave system boundary is adopted in this study, in which the 

following stages are considered: extraction of raw materials, transportation, fabrication, 

construction, operation, and end of life. For the end-of-life phase, it is assumed that the building 

would be imploded, and the assessment would include the relevant material collection and 

landfilling rates. The same system boundary is adopted for environmental, economic, and social 

evaluations to guarantee that the harmonization of the three approaches occurs satisfactorily. 

Ultimately, to enable seamless data transfer and to export the building model to different 

computational tools to perform various building analyses, it is suggested to make use of the 

Industry Foundation Classes (IFC) data model, a standardized and digital way to describe the 

built environment's data [68], providing software-agnostic data interoperability in the 

Architecture, Engineering, and Construction (AEC) industry [69]. Remarkably, in this case 

study, it is proposed that the final IFC models are exported to the ACCA software to use the 

usBIM.blockchain application, which allows practitioners to register any document uploaded to 

the platform on a public blockchain. The steps taken are represented in Figure 9.7. 

 

Figure 9.7 - First steps applied in the case study 
 

On the one hand, some papers suggest exporting the Bill of Quantities (BoQ) from the 

BIM software to a specific tool related to life cycle approaches or using plug-ins and add-ons 

to conduct the LCSA calculation in the BIM tool [63]. On the other hand, some researchers 
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encourage the inclusion of environmental, social, and economic data within the BIM model 

using different data sources [19]. This last approach is the most supported here since it 

represents the evolution of the building's digital model with the centralization of more data and 

information, thus allowing the growth of the building’s digital shadow in BIM into a building's 

DT in the following stages of the building life cycle. Therefore, the modeling process of this 

case study incorporated an efficient data integration method. Building materials' properties and 

additional data were seamlessly integrated into Autodesk Revit using a custom Dynamo script. 

This approach augmented the existing dataset, enhancing the depth and accuracy of information 

associated with building elements.  

In the context of the pre-construction stage, specific impact categories were 

meticulously selected to evaluate the building's sustainability from a holistic perspective. The 

Global Warming Potential (GWP), measured in kg CO₂ eq., was chosen as the environmental 

impact category, addressing the carbon footprint of the building materials and processes. The 

economic assessment focused on the building's life-cycle cost, encompassing aspects related to 

the cost-effectiveness of materials and construction methods. In parallel, the social assessment 

emphasized the well-being of workers and local communities, adopting the "Social Impact 

Rating" category. This rating category is considered a multifaceted approach, encompassing 

ethical labor practices, local sourcing, sustainable production methods, and community 

engagement—acknowledging the importance of social responsibility in construction projects. 

An extensive inventory database was established in Microsoft Excel to support the data 

integration and augmentation process. This database was comprised of the most frequently 

employed construction materials and building systems within the Brazilian construction sector. 

It drew upon data derived from previous projects conducted by a construction company in the 

state of Rio de Janeiro. The database contained a comprehensive array of information, including 

properties of materials, cost data, and regional availability.  

The gathering process was underpinned by the construction company's extensive 

experience in real-world projects, ensuring that the data reflected practical, on-the-ground 

considerations. Moreover, this wealth of data enabled the computation of final values to be 

inserted into the new parameters in Autodesk Revit, facilitating the quantification of 

environmental, economic, and social aspects within the building's life cycle. Utilizing this 

industry-derived data not only enhanced the accuracy of the assessments but also underscored 

the relevance of the study's findings to real-world construction practices. The summary of this 

process is provided in Figure 9.8, offering a succinct representation of the new parameters 

created in the 3D model and the database's content while maintaining the discussion's brevity. 
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Figure 9.8 - The process of integrating the inventory database with the building model 
 

It is important to highlight that the traditional architectural design process in BIM often 

involves manual exploration and iteration of design alternatives, which can be time-consuming 

and limit the exploration of diverse possibilities. This proposal encourages using visual 

programming languages, such as Dynamo, that offer a promising approach to automate and 

optimize this process by leveraging computational tools.  

Therefore, in order to facilitate the analysis of various design iterations and their 

corresponding environmental, economic, and social impacts, a systematic approach was 

adopted. Firstly, Dynamo, a visual programming language, was employed to establish a 

connection between the inventory database stored in Excel sheets and the Revit environment. 

This integration allowed for the seamless transfer of vital material information from the 

database to the Revit model, enriching each building element with detailed data. 

Secondly, a script was developed to update the baseline 3D model in Revit and generate 

alternative design options for key building elements. This script enabled the variation of 

parameters such as door types, window types, external wall configurations, and slab types, 

resulting in the creation of 24 distinct alternatives for the building construction. By 

systematically altering these elements, the script facilitated the exploration of diverse design 

possibilities, each with its unique set of environmental, economic, and social implications. 

A snapshot of the Dynamo code utilized in this case study is presented in Figure 9.9, 

providing insight into the technical implementation of the data integration process. 

Furthermore, to streamline the analysis of each design iteration, a Python code was developed 
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to collect data from the material takeoff of every solution. This Python script extracted essential 

data points from the Revit model and exported them to an Excel spreadsheet for further analysis. 

The script overview is detailed in Figure 9.10, outlining the key functions and procedures 

involved in the data collection process. 

 

 

Figure 9.9 - Part of the Dynamo code used in this case study 
 

 

Figure 9.10 – Script Overview 
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Subsequently, the exported data was subjected to rigorous evaluation and assessment to 

quantify the environmental, economic, and social impacts associated with each design 

alternative. Figures 9.11 and 9.12 delineate the algorithms employed to export material 

quantities to Excel and determine the least environmental impact materials, respectively. These 

algorithms provided a structured framework for analyzing the collected data and deriving 

meaningful insights into the sustainability implications of various design choices. 

 

 

Figure 9.11- Algorithm to Export Material Quantities to Excel 
 

By leveraging computational tools and scripting techniques, this approach facilitated a 

systematic exploration of design alternatives and their corresponding sustainability outcomes. 

Moreover, it underscored the importance of integrating data-driven decision-making processes 

within the architectural design workflow, paving the way for more informed and sustainable 

design practices in the construction industry. 
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Figure 9.12 - Algorithm to Determine the Least Environmental Impact Materials 

 RESULTS AND DISCUSSION 

This work intends to prove that integrating LCSA, DT, and blockchain creates a 

powerful Decision Support System (DSS) to be applied in the built environment. This DSS 

facilitates data-driven decision-making by providing stakeholders with real-time insights, 

allowing them to optimize design choices, material selections, and operational strategies 

throughout the building life cycle. Besides, this solution empowers stakeholders to make more 

informed and sustainable decisions, fostering a more efficient and environmentally conscious 

building industry. In order to thoroughly discuss the findings of this work, this section will be 

divided into three parts, as presented below. 
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9.13.1 Research Questions and Their Implications 

From the investigation conducted, key findings emerge related to a dynamic approach 

to achieving sustainability in the construction industry. It is understood that this industry still 

lacks an integrated and systematized methodology for assessing the triple-bottom-line 

sustainability of building projects, considering the impacts generated from the extraction of raw 

materials to the building end-of-life phase and benefiting the decision-making process 

throughout the whole building lifecycle. In addition, there is still a need to develop more 

guidelines related to the social and economic impacts generated by construction so that the 

sustainability assessment encompasses the three pillars comprehensively. This is a significant 

research gap, directly affecting the achievement of more sustainable buildings. 

In this context, the proposed framework adds to a growing corpus of research showing 

the steps to be taken to create an iterative and dynamic building sustainability assessment. This 

addresses RQ1 by offering a strategy to extrapolate the discussion on BIM-LCSA integration, 

usually focused exclusively on the early design stages of a building project. The workflow 

proposed in this study demonstrates the possibility of applying LCSA during different building 

phases with the aid of a building DT. From centralizing data and information in the same digital 

model and adopting a project management methodology focused on achieving sustainable 

goals, it will become much easier to carry out dynamic life cycle assessments at different stages 

of the building's life cycle. 

It is proposed that the LCSA results in the pre-construction phase improve design 

decisions and that, later, the digital model continues to be fed with real-time data so that new 

LCSAs can be applied and assist in the construction, renovation, and maintenance of the 

building. It is also expected that practitioners consider the future of individual elements and 

components since their impacts can be calculated and analyzed by integrating LCSA and BIM-

based DT. Deconstruction practices should be tested and compared to benefit decision-making 

during the building's end of life. These possibilities address RQ1 by proposing different levels 

of DTs throughout the entire building life cycle and creating a dynamic approach to improve 

building decisions. 

In turn, one primary application that a BIM-based DT can play a significant role in is 

ensuring that the sustainability assessment of a building takes into account temporal 

information. As implemented in conventional LCSA, using fixed time horizons may limit the 

availability of crucial data, leading to less realistic sustainability assessments. Addressing RQ2, 

the proposed framework offers a dynamic LCSA approach that can be applied at various stages 
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of the building's life cycle. By harnessing the power of DT and blockchain, sustainability 

assessments are enabled to continuously access and utilize real-time data without creating 

security and transparency issues. This seamless integration ensures that LCSAs remain current 

and adaptable, providing stakeholders with an up-to-date understanding of the building's 

environmental, economic, and social impacts throughout its entire life span.  

Moreover, incorporating blockchain technology further enhances the credibility and 

transparency of data sources, fostering trust and reliability in the sustainability evaluation 

process. Blockchain's decentralized and immutable nature ensures the synchronization of 

design records across all stages of the building's life cycle, safeguarding data integrity and 

preventing discrepancies that may arise from multiple stakeholders' contributions. 

Consequently, this synergistic utilization of DT and blockchain empowers stakeholders to make 

informed decisions, optimize sustainability outcomes, and drive transformative change in the 

construction industry. 

9.13.2 Case Study Results and Challenges 

Demonstrating the proposed framework via a building case study provides the reader 

with greater insight into how the proposed development can be leveraged to support relevant 

queries for various stages of a building life cycle. This building case study was tested with a 

focus on the building design stage, providing an opportunity to validate the effectiveness of 

integrating different technologies to achieve sustainability in the construction industry. 

Moreover, this integrative approach lays the foundation for extending real-time sustainability 

evaluations to subsequent phases of the building's life cycle, offering the potential to enhance 

decision-making processes and sustainability outcomes throughout the entire building's 

lifespan. 

The analysis of 24 different building design alternatives was conducted, starting with 

the baseline solution. The presentation of results was then organized according to the 

sustainability indicators evaluated, followed by an interpretation of the findings and their 

alignment with the proposed framework. All results were normalized to standardize the data 

and ensure that each criterion carries equal weight in this multi-criteria analysis. Besides, each 

alternative was represented by a unique combination of construction elements from a pre-

selected list. For example, the baseline solution is considered the first combination, represented 

by "d1 w1 e1 s1," where "d1" refers to door type 1, "w1" refers to window type 1, "e1" refers 
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to external wall type 1, and "s1" refers to slab type 1. The LCSA result summary related to the 

baseline 3D model is presented in Table 9.2, while the comparison among the different 

alternatives is visually shown in Figure 9.13.  

 
Table 0.2 - Life Cycle Impact Assessment result summary 

Sustainability 

Dimension 
Impact categories Total 

Environmental 
Global Warming 

Potential (kg CO₂eq) 
716,327 

Economic 
Life-cycle cost 

(Brazilian Real - BRL) 
18,952,789 

Social Social Impact Rating 3.784 

 

Notably, it is essential to emphasize that while the social indicator is intended to be 

maximized in this study, other indicators reflect negative impacts and are aimed to be 

minimized. To facilitate a consistent comparison, the inverse of the social indicator was 

employed as the final indicator throughout the analysis. This approach guarantees the uniform 

minimization of all indicators considered in this study.  

In this case study, the primary objective was not to determine the single most suitable 

solution for the building, as this would necessitate assigning specific weights to each criterion 

during the MCDM analysis [17]. The relative importance of these criteria varies based on 

project-specific factors and the preferences of stakeholders, aligning with the proposed 

integrative framework that stresses the significance of incorporating stakeholder preferences to 

achieve optimal and context-specific decisions.  

Nonetheless, while the case study was focused on the building design stage, the authors 

recognize the importance of testing the framework during the operational phase of an actual 

building. As part of the ongoing research, the authors are actively collecting data from a 

physical building where a 3D-BIM model developed in the design stage will continue to be 

utilized throughout the building operational phase. By integrating real-time data collected from 

IoT sensors during the operational stage, it is aimed to validate the framework's performance 

over the entire building life cycle. 
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Figure 9.13 - Comparison of impact categories for 24 building design combinations 
 

While exploring the feasibility of integrating different technologies in the construction 

industry, it is essential to acknowledge the challenges inherent in employing available market 

tools. One of the most significant issues is the interoperability challenge, where various devices 

and platforms often struggle to communicate effectively with one another, hindering the 

seamless flow of information and data. Additionally, these tools may not inherently support the 

diverse requirements of sustainability assessments in different building life cycle phases. 

Recognizing these obstacles, this paper underscores the necessity of developing a novel 

platform that can bridge the existing gaps, fostering a more integrated, efficient, and robust 

ecosystem for comprehensive sustainability assessments. 

9.13.3 The Role of a Semantic Platform and Future Development 

In order to facilitate the entire implementation of the integrative framework, it is 

suggested the creation of a platform for integrating the concepts, with a Smart Contract user 



324 
 

interface to be used throughout the whole building life cycle. This platform aims to address 

interoperability concerns and ensure the effective utilization of digital twins, blockchain 

technology, and real-time data for enhancing sustainability across the building life cycle. 

Figure 9.14 presents the semantic architecture for this platform. Three different layers 

are proposed here (i.e., the database layer, the logic layer, and the user interface) to allow the 

platform to be operable. The database layer consists of the 3-D building models and all data to 

be inserted and generated. Simulations should be carried out throughout the entire project 

lifecycle, either to benefit decision-making of which components and methods to use or to 

optimize the use of building systems during the operational building stage.  

Sensors and devices should collect real-time data from the physical building. In contrast, 

the building model should be calibrated to accept data from numerous data streams, such as 

video devices, laser scanners, accelerometers, Radio Frequency Identification (RFID) devices, 

or displacement sensors [32]. In this way, up-to-date simulations can be performed based on 

real-time data, and all data generated must be recorded in the blockchain platform. The logic 

layer may be divided into building phases as the stakeholders and processes involved can differ. 

Ultimately, the user interface is based on Smart Contracts to protect all data exchange 

throughout the building life cycle and guarantee data reliability and traceability. 

Besides, the team should choose a blockchain platform that aligns with the project 

requirements. In this decision, it is fundamental to consider factors such as scalability, data 

privacy, consensus mechanism, and smart contract capabilities. Then, designing and deploying 

smart contracts that define how the data will be stored, accessed, and managed becomes 

necessary. These smart contracts will dictate the logic governing interactions with the data. 

In turn, the proposed framework also suggests that the practitioner define the role 

mapping with permissions for each entity at this stage. For example, a specific entity may need 

permission to modify any file (i.e., building 3D models, 2D drawings, documents, and reports) 

generated during the design stages. However, this entity may not need permission during 

fabrication and assembly. In this context, it is necessary to precisely define a role mapping with 

permissions defined for each entity, which will directly affect the logic layer of the proposed 

platform. It is illustrated in Figure 9.15. 
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Figure 9.14 - Proposed semantic architecture for the integrated framework 
 

 

Figure 9.15 - Proposed role mapping with permissions defined for each entity 
 

The semantic architecture for the integrative system is an innovative proposal to guide 

the following steps in this ongoing research. To enhance the accuracy of this architecture, future 

iterations of the framework will explore the integration of IoT sensors in a physical building to 

collect real-time data. Besides, this architecture will be developed with a focus on scalability 

and its potential for broader industry adoption. The main goal is that researchers and industry 
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stakeholders can explore this platform in various building types and construction projects, 

ranging from small-scale developments to large infrastructure projects. Ultimately, identifying 

potential challenges and opportunities will facilitate widespread acceptance and integration. 

 CONCLUSION 

This paper elaborated on viable ways to improve the LCSA application in buildings, 

focusing on a dynamic sustainability assessment. This need arose from the observation that 

relying on historical data in impact assessments is recurrent, ignoring the impact of time-related 

changes in building data. This simplification compromises the reliability of LCSA findings, 

introducing a potential bias and questioning the overall validity of sustainability assessments in 

the construction industry. 

In this context, this paper presented a framework that integrates the LCSA methodology 

with DT and blockchain. On the one hand, the building DT model provides a real-time digital 

representation of the physical building throughout its life cycle. On the other hand, blockchain 

is introduced to address the critical aspects of data security, integrity, and transparent 

collaboration in sustainable construction practices. The integration proposed in this work, 

demonstrated in a building of typical architecture in the southeast of Brazil, is an earnest attempt 

to offer practical solutions to the challenges faced in embracing construction sustainability 

comprehensively. 

Although research has illuminated the importance of combining different technologies 

to aid the application of LCSA to built assets, the integration of LCSA, DT, and blockchain in 

a building remains briefly addressed in the literature, as proved by the systematic review posed 

in this work. Combining these concepts can benefit the decision-making process of which 

materials and methods would be most suitable for a building, as well as the most appropriate 

decisions during construction and post-construction, considering the three pillars of 

sustainability.   

The limitations of this work can be stated as follows: even though the integration of DT 

and blockchain in the dynamic LCSA process has shown promising results in the proposed 

building case study, it has laid the foundation for a dynamic LCSA approach exclusively within 

the building design stage. To advance the field, future research should focus on expanding the 

framework's capabilities and addressing any limitations encountered. Investigating innovative 

technologies, refining assessment methodologies, and exploring real-world applications will 
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further solidify the proposed framework's potential for transformative change in sustainable 

building practices. Still, the discussion presented in this work set the stage for future research 

and implementation of dynamic LCSAs during buildings' pre-construction, construction, and 

post-construction phases. Ultimately, it is essential to highlight that the study presented in this 

paper is part of a larger research project on developing an application software to be used in 

real-world buildings. 
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APPENDIX D – TOWARDS DYNAMIC LIFE CYCLE SUSTAINABILITY 

ASSESSMENTS: A REAL-WORLD CASE STUDY INTEGRATING DIGITAL 

TWIN AND BLOCKCHAIN 

This chapter is submitted as an original research article.  
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FIGUEIREDO, Karoline; PIEROTT, Rodrigo et al. Towards Dynamic Life 

Cycle Sustainability Assessments: A Real-World Case Study Integrating Digital 

Twin and Blockchain.  

 

Abstract: Sustainability in construction necessitates a triple-bottom-line approach, integrating 

environmental, economic, and social considerations throughout the project lifecycle. However, 

conventional sustainability assessments face challenges in data management and 

methodological standardization, in addition to being typically based on static data, 

compromising the reliability of findings. This paper introduces a novel framework integrating 

Life Cycle Sustainability Assessment (LCSA), Digital Twin, and blockchain. Developed using 

the Design Science Research methodology, a machine-learning-based software application is 

presented to facilitate dynamic sustainability assessments by leveraging real-time data from IoT 

sensors. This integration aims to enhance traditional sustainability assessments by harnessing 

the benefits of Digital Twin technology, such as real-time monitoring, predictive analysis, and 

scenario testing, to provide more accurate and timely insights into the sustainability 

performance of construction projects. Additionally, blockchain technology is utilized to ensure 

data integrity and transparency throughout the assessment process, addressing data security and 

trustworthiness concerns. A real-world case study comparing static and dynamic LCSA 

outcomes demonstrates the approach's efficacy. Comparative analysis reveals significant 

disparities in impact assessments, such as a 20.37% increase in non-renewable energy demand 

from static to dynamic LCSA after 12 months of real-time data collection. This approach 

provides critical insights into the temporal variability of sustainability impacts, underscoring 

the transformative potential of integrating real-time data into LCSA frameworks. 

 

Keywords: 

Blockchain; Digital Twin; Energy Performance Gap; Life Cycle Sustainability Assessment; Machine 

Learning. 
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 INTRODUCTION 

Sustainability, at its core, entails the creation of projects that strike a delicate balance 

between environmental, economic, and social considerations, with a commitment to meeting 

both present and future needs [1]. In the construction industry, this means prioritizing projects 

that consider the three pillars of sustainability and that are capable of adapting to changing 

conditions and meeting the needs of all stakeholders. In this vein, a triple-bottom-line (TBL) 

approach for construction projects is essential, where environmental, social, and economic 

factors are considered simultaneously to develop more sustainable built assets. 

 Besides, sustainability in the construction industry demands a holistic approach that 

considers the entire life cycle of buildings and infrastructure. Building upon the TBL 

framework, Life Cycle Sustainability Assessment (LCSA) emerges as a crucial tool. LCSA 

ensures a comprehensive examination of a built asset's impacts and benefits throughout its 

entire life cycle, aligning with the broader sustainability goals of considering the three 

sustainability dimensions together [2]. However, the integration of LCSA in construction 

presents several challenges, particularly in terms of data management and methodological 

standardization.  

 First, the sheer volume of data required for assessing functional and technical aspects 

throughout the life cycle poses a significant hurdle [3]. Moreover, the lack of standardized 

approaches in combining Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social 

Life Cycle Assessment (S-LCA) methodologies, related to environmental, economic, and social 

dimensions, respectively, creates gaps in the effective application of LCSA to building projects 

[4] Ultimately, static data is often utilized in building impact assessments, making the impact 

of time-related changes on the data frequently overlooked [5]. This oversight jeopardizes the 

reliability of LCSA findings and compromises the overall validity of sustainability assessments 

in the construction industry. 

 To address these challenges, this paper introduces a machine learning-based framework 

application that plays a central role in dynamically enhancing LCSA. More specifically, the 

development of a robust and adaptive software solution is presented, integrating a Building 

Information Modeling-based Digital Twin (BIM-based DT) and blockchain technology into the 

LCSA framework. This integration aims to revolutionize sustainability assessments in 

construction by offering a strategic response to the complexities posed by data management, 

static data reliance, and methodological standardization challenges. By combining these 
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cutting-edge technologies, this research aims to create a dynamic, real-time, and secure 

framework for sustainability assessments throughout the entire life cycle of buildings.  

 Particularly, this paper intends to discuss the rationale behind each component of the 

proposed integration. Firstly, the LCSA application ensures a holistic environmental, economic, 

and social evaluation. Secondly, the building DT model evolves from a Building Information 

Model (BIM) and provides a real-time digital representation of the physical building throughout 

its life cycle. Lastly, blockchain is introduced to address the critical aspects of data security, 

integrity, and transparent collaboration in the evolving landscape of sustainable construction 

practices. This integration is not only conceptual; it is an earnest attempt to offer practical 

solutions to the challenges the construction industry faces in embracing sustainability 

comprehensively.  

 This investigation is underpinned by several hypotheses, each addressing specific facets 

of this integrated approach. The primary hypothesis proposes that the amalgamation of BIM, 

DT, and blockchain in the LCSA process will substantially elevate the precision, 

comprehensiveness, and reliability of sustainability assessments within the construction 

industry. Recent literature indicates that the utilization of BIM furnishes crucial static 

information at the building level, contributing to more accurate environmental assessments [6–

10]. Anticipating that the DT, complementing BIM, will provide a dynamic evaluation of 

impacts, this paper also hypothesizes the DT's potential to offer insights beyond traditional 

LCSA capabilities. Additionally, blockchain integration is expected to play a pivotal role in 

ensuring the security, transparency, and integrity of real-time data collected, addressing 

confidentiality concerns commonly disregarded in building LCSAs.  

 In totality, the integrated approach is hypothesized to enhance not only the assessment 

of environmental impacts but also the evaluation of economic and social aspects, culminating 

in a more holistic building LCSA. Therefore, the research question (RQ) guiding this study is 

as follows:  

(RQ) What are the roles of BIM-based DT and blockchain in facilitating a dynamic and 

comprehensive LCSA, and how does their integrated use contribute to sustainability in the 

construction industry?  

While LCSA offers a comprehensive framework for evaluating building life cycles, this 

paper focuses primarily on energy consumption due to its critical role in overall sustainability. 

This decision aligns with industry imperatives to address challenges such as the Energy 

Performance Gap (EPG) and the growing demand for energy-efficient buildings [11]. By 

prioritizing energy analysis within LCSA, this study aims to tackle multifaceted challenges, 
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including discrepancies between predicted and actual energy performance [12]. This emphasis 

reflects industry recognition of energy's pivotal role in environmental, economic, and social 

sustainability outcomes, aiming to advance practical solutions for enhancing energy efficiency 

in the built environment. 

 This paper is organized as follows: Section 2 provides the literature review, offering 

essential contextual information to identify the research problem and motivation. Section 3 

describes the methodology used in this research, outlining the approach and techniques 

employed. Section 4 presents the software development proposed in this work. A real-world 

case study is given in Section 5 to demonstrate the software’s usability and validate this 

proposal. Section 6 showcases the main results obtained from the research and provides a 

comprehensive analysis and discussion of these findings. Finally, Section 7 presents the study's 

conclusion, summarizing the key findings, discussing their implications, and offering insights 

into potential future research directions. 

 LITERATURE REVIEW 

This section proposes a comprehensive literature review, the synthesis of which is 

presented below. This review will enable the identification of existing gaps in the literature and 

lay the foundation for the proposed integration of concepts. 

9.17.1 Life Cycle Sustainability Assessment 

The LCSA methodology is an interdisciplinary framework that simultaneously 

evaluates the impacts associated with products and processes from an environmental, social, 

and economic perspective [13]. The techniques that form the LCSA framework (i.e., LCA, 

LCC, and S-LCA) follow the same methodological structure based on the ISO 14040 standard. 

This methodological structure is divided into four stages: Goal and Scope definition, Life Cycle 

Inventory (LCI), Life Cycle Impact Assessment (LCIA), and Interpretation [14]. 

 Regarding the use of LCSA as a decision-making technique in the construction industry, 

researchers have applied this methodology mainly during the early stages of a building design 

[2,4,15,16]. A recent study introduced an innovative LCSA model designed for integration into 

the design phase of new building projects and energy refurbishments for existing buildings [17]. 

The authors further developed a novel formulation and weighting method to derive a final 
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LCSA index, facilitating a holistic assessment of design scenarios and considering the three 

pillars of sustainability. The study also innovatively integrates machine learning techniques into 

the optimization process, enhancing the efficiency of design assessments while upholding their 

precision. 

Nevertheless, when considering using this methodology in different stages of the 

building's life cycle, a new challenge emerges related to the need for more temporal information 

in the assessments. Notably, the current LCSA methods take a stagnant approach that fails to 

consider dynamic factors during the building life cycle, such as material deterioration, varying 

energy consumption, and technology up-gradation, resulting in inaccurate sustainability 

assessments [18]. In this context, the data inventory can be considered the most sensitive and 

challenging step of an LCSA application since it leads to the creation of a model that should 

represent, as accurately as possible, all the exchanges between the distinct phases of a process 

[19]. So far, the need for more impact data sources adapted to the specific requirements of a 

building project has been seen in the literature [4]. Besides, it has been noted that impact 

assessments are typically based on data from historical series, which hinders the use of LCSA 

for rapid corrective actions on a project.  

Other recent publications presented different frameworks for a dynamic LCSA 

application but with limited advances in this field. Francis and Thomas [18] developed a 

methodological framework that allows practitioners to set desired values for material use, 

material replacement alternatives, energy mix, and water recycling percentage to evaluate the 

building impacts of the selected combination of values. It can be observed that the authors 

considered more environmental indicators than economic and social ones. Besides, the 

framework continues to resemble the traditional LCSA application, allowing the comparison of 

several alternatives from manual changes in the system. 

9.17.1.1 BIM-LCSA integration 

Considering the specific application of LCA, thus assessing only environmental aspects, 

the integration with BIM has gained substantial traction in the literature. Different ‘LCA 

Profiles’ have emerged, establishing associations between LCA processes and construction 

materials or components, often represented as BIM objects [20]. BIM's role in this context is 

linked to an information aggregator and context provider, offering a rich dataset to support the 

LCA analysis. Therefore, LCA tools and plug-ins are pivotal in connecting the information 

sourced from BIM with the corresponding LCA processes within the databases [21]. Still, while 

promising, recent studies have shown that this integration has sometimes led to inaccurate 
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results within the current designers' workflow [6,7]. This conclusion underscores the critical 

need for analysis tools that seamlessly align with the dynamic nature of a building project.  

In turn, it is observed that the application intended to improve the LCSA methodology 

via BIM integration is still briefly addressed in the literature. For example, Boje et al. [20] 

discussed how BIM-based DT data can affect LCSA outcomes. However, the case study 

presented to validate the proposed framework was related to a simplified version of this 

integration with limited scope, argumentation, and data. Notably, the case study was focused 

on demonstrating the complementary roles between BIM and DT, being limited in scope to 

Environmental LCA. 

9.17.2 Digital Twins in Construction 

Unlike BIM, which focuses on centralizing data and information and is typically used 

as a single digital shadow [22], a building DT can provide timely optimization suggestions by 

mirroring the building's lifecycle and current status [23]. In this context, DTs of constructed 

assets can present different complexity levels from design to handover, depending on the 

availability of data and the model's sophistication [24]. 

 A recent review paper [25] has highlighted that most methods for creating DTs are only 

effective for specific purposes and may not be suitable for other types of projects. Additionally, 

many of these applications begin by generating a 3D BIM model and then incorporating non-

geometric information from sensors or devices in the physical world into the digital model. This 

additional data can include various parameters such as temperature, humidity, pressure, 

vibration frequency, flow rate, cost, energy consumption, and more. This data insertion 

guarantees the transformation of the model into a BIM-based DT representation. 

For example, a recent publication presents a case study of a university building using 

IoT sensors integrated with the virtual BIM model with a focus on environmental aspects [26]. 

Throughout the process, the effectiveness and challenges of the proposed framework 

architecture were analyzed. However, to avoid difficulties in rendering the model for web-based 

viewers, the authors decided to reduce the size of the BIM model created using Autodesk Revit 

to 20 MB from over 500 MB. To achieve this, they performed BIM lightweight and removed 

all irrelevant elements of the building, such as members, floors, and redundant data. They 

retained only the spatial information necessary for environmental monitoring and manually 
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deleted all unnecessary elements per the system requirements. Therefore, this DT model is not 

suitable for other types of analysis. 

 In turn, the literature shows that using virtual models as a platform for continuously 

tracking building components during the operation and maintenance phases is underutilized 

despite building monitoring and control opportunities. Previous methods for integrating virtual 

models and physical construction have primarily focused on resource and activity monitoring 

during the construction stage, as well as documentation of the as-built [27]. 

9.17.3 Blockchain in Construction 

In the ever-evolving domain of data analysis and machine learning, the integrity and 

trustworthiness of data are fundamental. Traditional methods of securing data typically rely on 

centralized systems, which are susceptible to single points of failure and malicious alterations. 

Blockchain technology offers a solution to these challenges by providing a decentralized and 

immutable ledger system [28]. 

The advantages of using blockchain for this purpose are multifold. It provides 

immutability, ensuring that once the data is stored, it cannot be altered, which is crucial for 

maintaining records that may be subject to future scrutiny or auditing [29]. The decentralized 

nature of blockchain means that it does not rely on a central point of trust, making the data 

integrity mechanism robust against failures. Moreover, the transparency and trust provided by 

blockchain mean that all participants can verify the data independently, fostering a trustful 

environment [30]. 

When considering blockchain utilization in the construction sector, this technology is 

encouraged in all stages of the building life cycle. For example, professionals traditionally 

raised concerns about the absence of systematic records of inspection and operations during the 

fabrication stage [31]. Utilizing a digital fabrication drawing production with the 

synchronization of data records will enable higher transparency and better collaboration 

opportunities. Besides, using information from the factory, it is possible to develop a digital 

fabrication model in real-time, improving the digital building model and facilitating LCSA 

applications [5]. Ultimately, Blockchain can establish more efficient connections among 

different professionals and provide innovative solutions for the challenges faced by external 

stakeholders through a dynamic perspective on value creation [32]. 
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 METHODOLOGY 

The methodology applied in this work is the Design Science Research (DSR) [33], 

structured according to Peffers et al. [34]. The methodology encompasses the following key 

phases: (1) problem identification and motivation, (2) definition of solution objectives, (3) 

artifact design and development, (4) demonstration, (5) evaluation, and (6) communication.   

In previous attempts at implementing life cycle techniques in building projects, the 

authors encountered several limitations [2,21,35–37]. These challenges prompted a re-

evaluation of the approach, leading to the exploration of innovative solutions in the literature 

and the market. The scrutiny revealed inherent complexities related to data management, 

methodological standardization, and an overreliance on static data. Importantly, it became 

apparent that a paradigm shift was needed to overcome these challenges and enhance the 

accuracy and reliability of sustainability assessments. 

Furthermore, the significance of privacy and security concerns emerged, especially 

when dealing with real-time data collected from buildings. This concern gained prominence 

during attempts at LCSA applications where limitations were encountered. The privacy of 

occupants and the need for secure data management became central issues that conventional 

approaches struggled to address effectively. 

In this vein, the integration of DT technology for real-time data collection and 

visualization, coupled with blockchain to ensure user privacy, emerged as a viable option. On 

the one hand, DT technology, evolving from the BIM methodology, was introduced as a 

dynamic solution capable of providing real-time data and a comprehensive representation of 

the building throughout its lifecycle. This evolution addresses limitations from previous LCSA 

attempts and introduces a more robust approach to building data representation. On the other 

hand, blockchain, known for its capabilities in ensuring data security, integrity, and transparent 

collaboration, emerged as a vital component in guaranteeing the confidentiality of sensitive 

information gathered from building occupants. 

This conceptual atomization of the problem underscores the intricate challenges faced 

in sustainability assessments, each component representing a critical aspect that the integrated 

approach seeks to address. Therefore, a rigorous literature review was conducted to 

systematically address these challenges. This review focused on applying LCSA, DT, and 

blockchain concepts in the construction industry. The objective was to gain insights into the 

existing landscape, identify potential synergies, and understand the feasibility of integrating 

these concepts to enhance sustainability assessments in the construction domain. This research 
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aims to contribute to a more robust and effective sustainability assessment framework in the 

construction industry by recognizing the interplay of challenges, solutions, and the need for an 

integrated approach. 

Based on this, the identified problems in sustainability assessments in the construction 

industry necessitate a well-defined set of objectives for the proposed solution. The objectives 

of this study are twofold: 

Objective 1: Enhance the precision, comprehensiveness, and reliability of sustainability 

assessments, focusing on addressing the dynamic aspects of building impacts and advancing 

the understanding of sustainability over time. 

Objective 2: Address privacy and security concerns in real-time data collection in 

buildings. 

Then, the artifact design and development step involves designing an integration process 

to be implemented in building projects. This solution will be demonstrated and validated 

through a real-world case study application. The subsequent steps involve evaluating challenges 

in implementing the proposed integrative framework, defining future exploratory directions, 

and addressing the research question posed. A visual representation of the methodology is 

presented in Figure 10.1.  



344 
 

 

Figure 9.16 - Methodology proposed for this study 

 INTEGRATED FRAMEWORK 

This section introduces the development of an integrated framework based on what has 

been discussed so far. In this study, a machine learning-based approach was developed to 

predict and analyze real-time energy consumption within the context of LCSA. The selection 

of the RandomForestRegressor was driven by its robustness in handling complex datasets and 

its ability to evolve predictions over time through an interactive user interface. The primary aim 

is to accurately predict unknown energy consumption values, indicated as -1 in the dataset, and 

to refine these predictions over time through a real-time user interface. 
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9.19.1 Data Collection and Preprocessing 

The core of the software development lies in the collection and preprocessing of a 

dataset, denoted as 𝐷 =  {(𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥, 𝑦)}, comprising n samples. This dataset 

encapsulates critical variables such as Temperature (T), Season (S), Occupants Ratio (O), Room 

Size (R), and Power Cost (Co) that are carefully chosen for their potential impact on energy 

consumption, energy cost and thermal comfort of occupants, which serves as the key impact 

categories in LCSA. The target variable, y, in our analysis, represents the Total Energy 

Consumption C. Knowing that, the target variables are get from dataset D, then it is extracted 

the feature matrix X and the target vector y. Also, the Energy Cost is calculated and stored in 

the model, considering the power distribution company’s cost rating related to the period when 

the data was gathered. 

The dataset is then divided into training and test sets, with the training set comprising 

(1 − 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒) × 𝑛 samples and the test set comprising 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 × 𝑛 samples. This split was 

important for validating the model's performance on unseen data. Finally, the 

RandomForestRegressor model was trained on the subset of the dataset with known energy 

consumption values from in-loco gathering data. The training process involved optimizing a set 

of hyperparameters 𝜃 = {𝜃ଵ, 𝜃ଶ, … , 𝜃}, including 'n_estimators', 'max_depth', and 

'min_samples_split'. The optimal hyperparameters 𝜃∗ were identified using 5-fold cross-

validation, which facilitated the fine-tuning of the model to minimize loss. 

A distinctive feature of this methodology is the incorporation of an interactive interface. 

This interface enables the system to update specific records of energy consumption collected 

from Internet of Things (IoT) sensors and devices, thereby enhancing the model's adaptability 

and accuracy over time, reaching a smart model. The algorithm dynamically incorporates IoT 

inputs into the model, re-predicting energy consumption values for records previously marked 

as unknown. 

9.19.2 Digital Twin-Driven Model Evaluation  

Post-training, the model's performance is rigorously evaluated using metrics such as 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error 

(MAE). These metrics not only assess the accuracy of the model but also provide essential 

insights into its error margins, critical for the reliability of energy consumption predictions.  
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Visualization techniques, encompassing scatter plots, feature importance charts, pair 

plots, and heatmaps, contribute to a holistic understanding of the model and the intricate 

relationships between diverse features. Notably, the data fueling these evaluations originates 

directly from strategically positioned IoT sensors within the physical building. These sensors 

seamlessly interface with a 3D building model, forming a robust DT. This integration ensures 

real-time representation and dynamic adaptation to the building's evolving conditions. 

In this context, the developed algorithm represents a groundbreaking fusion of 

automated machine learning predictions with adaptability driven by data generated from IoT 

sensors. This integration not only serves as a cutting-edge tool for predicting energy 

consumption but also stands as an integral component within a broader LCSA framework. The 

building DT, through its dynamic connection with real-world data, reinforces the model's 

practicality and contributes significantly to the comprehensive evaluation of sustainability in 

building projects. 

9.19.3 Blockchain-Ensured Data Integrity 

Within the Python script developed for predicting energy consumption, blockchain 

technology is seamlessly integrated to fortify the integrity of the gathered data. The process 

involves creating a cryptographic hash of the file's contents, essentially forming a compact 

digital fingerprint. A Python library, PyChain, is utilized to simulate blockchain behavior, 

although the recommendation stands for considering a more advanced network. PyChain 

facilitates the creation of a new block containing the file's hash, appending it to the existing 

chain and securely linking it to the preceding one. This interconnection guarantees that any 

attempt to manipulate the data becomes readily detectable, as it necessitates altering the entire 

chain. 

Integrating blockchain technology to protect the output of a machine learning model 

represents an innovative approach to ensuring data integrity. In this implementation, blockchain 

serves as a robust tool to create an immutable record of energy consumption and energy costs, 

enhancing the reliability and trustworthiness of the analysis. As the technology matures and 

becomes more accessible, the role of blockchain in securing and verifying data will likely 

expand, offering a new standard for data integrity. 

In the context of integrating this idea with a building DT, it is important to highlight that 

the data collected pertains to the daily energy use of occupants, accounting for their presence 
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or absence from home. This level of granularity is crucial for accurate predictions. Here, 

blockchain plays a pivotal role in guaranteeing the privacy of occupants. Blockchain safeguards 

sensitive information related to occupants' daily routines, usage patterns, and home occupancy 

times by ensuring an immutable data record. As the technology matures, blockchain's 

significance in securing and verifying data, particularly in scenarios involving personal privacy, 

is poised to become a cornerstone in data analytics and machine learning applications. 

9.19.4 Pseudocode for the Integrated Framework 

Figure 10.2 presents the pseudocode outlining the integrated framework for predicting 

real-time energy consumption, leveraging DT, and ensuring data integrity through blockchain 

technology. This pseudocode emphasizes key steps, including data preprocessing, model 

training, real-time adaptability through an interactive interface, evaluation, visualization, DT 

integration, and blockchain-enabled data integrity and privacy assurance. 

 

Figure 9.17 - Pseudocode of the software application proposed in this study 
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 CASE STUDY 

A case study is examined to validate the practicality and efficacy of the proposed 

software application. The whole process was developed on the Microsoft Windows 11 

operating system, using an Intel core i7 processor at 2.3 GHz and 32GB of RAM. It was 

considered an actual single-family house of typical architecture in the southeast region of Brazil 

to present a discussion representative of the Brazilian construction industry. The analyzed 

construction features a two-story design, with a ground floor and an upper floor, with a total 

built area of 230m². The project was developed in April 2020, and the baseline 3D model was 

modeled in Autodesk Revit 2021. The construction stage lasted from May 2020 to August 2021, 

situated in Campos dos Goytacazes - RJ, Brazil, 21°45'02.2" S 41°21'31.4" W. Figure 10.3 

displays some orthographic views of this project, along with a rendered image and the 3D model 

in Revit. The model was developed based on the Level of Development (LOD) 400, using 

graphical representation of components, with detailed information on fabrication, assembly and 

installation. 

During the later design stage, a static LCSA was performed using the 3D BIM model, 

considering a building service life of 60 years. The analysis employed a cradle-to-grave system 

boundary, encompassing product manufacturing, transportation, construction, operation and 

maintenance (O&M), and end-of-life phases. For the end-of-life phase, assumed to involve 

implosion, the analysis factored in material collection and landfilling rates. This consistent 

system boundary was applied across environmental, economic, and social analyses for effective 

harmonization. 
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Figure 9.18 - The case study used in this study 
 

The environmental impact categories chosen for this study are widely discussed in the 

literature and are related to building energy consumption. This consumption is divided into 

Primary Energy Demand (PED), Non-renewable Energy Demand (NED), and Renewable 

Energy Demand (RED). For the economic analysis, the impact category is the life-cycle cost 

associated with the energy usage for lighting and HVAC, considering all building phases within 

the system boundary of this study. Finally, the social analysis focuses on Indoor Air Quality 

(IAQ) as a crucial dimension of occupant well-being and satisfaction. A comprehensive 

checklist was developed to assess various factors influencing IAQ during the building's life 

cycle. This checklist encompasses ventilation systems, natural ventilation, material choices, 

maintenance practices, air filtration, humidity control, and compliance with standards. 

This assessment, based on the static BIM model, provided insights into the 

environmental, economic, and social dimensions associated with the building life cycle. Having 

established the baseline with the static LCSA and after constructing this house, the Revit model 

was upgraded to Revit 2024, a more contemporary software version. This update was 

accompanied by a meticulous data integration and extraction process using Dynamo, a visual 

programming language recognized for its versatility and efficiency in architectural and 

construction contexts. The 3D model was augmented with additional as-built data to transform 

it into a comprehensive DT of the house. This integration and extraction were essential for 
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ensuring the continued relevance and accuracy of the digital representation of the structure, 

enabling extensive analysis and assessment within the scope of the study.  

The installation of sensors in the house was carried out with the owner's explicit consent. 

The sensors were installed to monitor various aspects of the house's environment, including 

temperature, humidity, and air quality, among others. However, it was made clear that the 

privacy of the occupant data must be fully guaranteed. This means that any data collected will 

be treated with the utmost confidentiality and will not be shared with any third party without 

the explicit consent of the occupant. Additionally, measures have been put in place to ensure 

that the data collected is only used for the intended purpose and is not misused in any way. 

Leveraging this real-time data, the developed software played a pivotal role in 

estimating energy consumption, energy cost, and IAQ. The integration of machine learning 

algorithms, including the RandomForestRegressor, allowed for accurate predictions and 

adaptability based on the dynamic input from the installed IoT sensors. The Random Forest 

algorithm is a versatile machine learning model employed in our work to enhance the accuracy 

of predictions. Its significance comes from its collective method, which utilizes multiple 

decision trees to make predictions based on various subsets of the dataset, ensuring robustness 

against overfitting and improving prediction reliability.  

In our framework, RandomForestRegressor is instrumental for interpreting the real-time 

data collected from IoT sensors, enabling the framework to adapt its predictions dynamically 

as new data is received. This continuous learning aspect is crucial for maintaining the precision 

of sustainability assessments and facilitating intelligent decision-making in the management of 

building systems. By leveraging the Random Forest model, we ensure that our framework 

remains sensitive to the evolving patterns and trends in the data, supporting a sustainable and 

responsive building environment and enhancing the ongoing dynamic method proposed. 

This relationship between real-time data from the sensors and the framework's 

predictive capabilities not only facilitated precise estimations but also contributed to the overall 

dynamic adaptability and responsiveness of the model. Ultimately, using blockchain ensures 

occupant privacy as agreed with the owner. In this way, the proposed application can be utilized 

to maximize the utility of the collected data for improving the sustainability assessment 

framework within the broader context of the DT, blockchain, and LCSA integration. 
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 RESULTS AND DISCUSSION 

This section first presents the findings from the static LCSA based on a 3D BIM. It is 

followed by an analysis of the dynamic LCSA outcomes derived from the evolved DT, which 

provides insights into the transformative potential of real-time data integration from IoT 

sensors. A comparative analysis then illustrates the discrepancies and enhancements between 

the static and dynamic approaches. Finally, a discussion is presented about the roles of BIM-

based DT and blockchain in fostering a dynamic and comprehensive LCSA, answering the 

research question posed in the Introduction section.  

9.21.1 Static LCSA Findings 

In order to carry out the static LCSA, an energy model was created using Autodesk 

Revit, which was derived from the house's 3D BIM model. This model, structured according to 

the Green Building XML schema (gbXML), encompasses the primary heat transfer pathways 

within the building. The gbXML schema is specifically designed to streamline the transfer of 

building data from BIM platforms to environmental analysis tools [2]. Utilizing this model, the 

annual energy consumption of the building was estimated, considering the energy used by both 

HVAC and lighting systems. 

This work adopted the TRACI 2.1 characterization scheme to classify and understand 

environmental impacts. The TRACI methodology characterizes impact categories at the 

midpoint level by drawing cause-effect chains to identify the point at which each category is 

characterized [38]. In this study, the Tally® application was used to match each material in the 

3D BIM model in Autodesk Revit with the GaBi database materials, allowing for an automated 

exchange process [39]. Besides, the estimated annual energy use calculated through the energy 

model was added to the Tally® application to consider this data in the environmental impact 

calculations. 

The reference unit used in this study was the full collection of processes and materials 

required to construct a single-family house, which is quantified according to the given goal and 

scope of the assessment over the entire life of the building. For example, Figure 4 presents data 

obtained from Tally to analyze material mass and non-renewable energy demand across each 

life cycle stage. The total energy calculation encompasses all stages of the design options 



352 
 

studied, including material manufacturing, transportation, maintenance, replacement, and 

eventual end-of-life considerations.  

 

Figure 9.19 - Static data obtained during the design stage of the case study 

9.21.2 Dynamic LCSA Outcomes 

The dynamic LCSA, facilitated by advanced machine learning techniques integrating 

DT and blockchain technologies, revealed a significant shift in the building's energy 

consumption profile. The real-time data, sourced from IoT sensors installed in the house, 

provided insights into the actual energy usage, diverging from the initial predictions of the static 

LCSA. This dynamic approach offered an accurate reflection of the building's energy 

consumption, accounting for variables like occupant behavior, environmental conditions, and 

material performance over time. 

The integration of the RandomForestRegressor algorithm within the software 

application played a critical role in dynamically predicting and adjusting the energy 

consumption values. The software's ability to iteratively learn and adapt to real-time data led to 

a more nuanced understanding of the building's energy dynamics, surpassing the static LCSA's 

capabilities. Figure 10.5 presents a pair plot, a graphical matrix that illustrates the relationship 

between multiple variables in the dataset. 
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Figure 9.20 - Pair plot of building energy consumption dynamic data 
 

On the diagonal, histograms reveal the distribution of each individual variable, 

providing insight into their individual characteristics, being the spread and central tendency. 

Off-diagonal scatter plots compare the interactions between pairs of variables, which in this 

case study, highlight the trends and potential outliers, which are the constant variables (Room 

Size). These visual relationships are crucial for identifying how variables influence each other 

and were essential to step in exploratory data analysis. The box plots adjacent to the histograms 

offer a view of each variable's distribution, median, and outliers. For this study, the occupancy 

ratio and temperature showed a strong correlation with the proposed model. 

9.21.3 Comparative Analysis 

The comparative analysis reveals fluctuations in the environmental impacts across 

different stages of the building's life cycle. Notably, the static LCSA performed during the 

design stage offers a baseline understanding of energy demands. However, as seen in the 

dynamic LCSAs conducted after 6 and 12 months, variations emerge due to real-time 

adaptations and changes in occupant behavior and energy consumption patterns. 

The developed algorithm, utilizing automated machine learning predictions with IoT-

driven adaptability, stands as a novel and flexible tool. Importantly, it is a foundational 

component in the broader LCSA framework, enriching the dynamic and comprehensive 

assessment of sustainability in building projects. In this context, the primary objective here was 
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to rigorously compare the findings of the static LCSA based on the initial 3D BIM model with 

the outcomes of the dynamic LCSA utilizing the augmented DT. 

As shown in Figure 10.6, the increments in all three types of Energy Demand suggest 

that the building undergoes alterations that impact its energy efficiency over time. This 

reinforces the significance of dynamic assessments, as they consider evolving conditions, 

ensuring a more accurate representation of the building's sustainability profile. Moreover, it is 

crucial to recognize that these disparities will likely amplify over time. The dynamic LCSA 

approach, facilitated by the BIM-based DT, allows for continuous updates based on the 

building's actual performance and usage patterns. This ongoing adaptability becomes 

increasingly pertinent as unforeseen alterations occur throughout the building's life cycle, which 

was not accounted for during the initial design stage. 

 

Figure 9.21 - Comparative Analysis between Static and Dynamic LCSAs 
 

Ultimately, the software's ability to perform dynamic LCSAs not only captures the 

present state of sustainability impacts but also positions itself as a valuable tool for predicting 

and managing future sustainability considerations. As the building evolves, the software can 

continue to provide insights, offering a proactive approach to sustainable construction practices. 



355 
 

This aligns seamlessly with the primary goal of this study – to enhance the comprehensiveness 

and accuracy of sustainability assessments throughout the entire life cycle of buildings.  

Although our discussion primarily focuses on environmental aspects, it is imperative to 

acknowledge the potential for incorporating economic and social factors within the same 

framework. While real-time data collection over 12 months allows for robust environmental 

analysis, observing tangible changes in economic and social factors may take longer. However, 

the inherent adaptability of this dynamic LCSA approach, facilitated by the BIM-based DT and 

blockchain, provides a foundation for incorporating economic and social considerations in 

future decision-making processes.  

As the building's lifecycle progresses, ongoing updates based on actual performance and 

usage patterns enable stakeholders to monitor economic indicators, such as operational costs 

and return on investment, as well as social factors, including occupant satisfaction. Recognizing 

that these disparities are likely to amplify over time underscores the importance of adopting a 

holistic approach that considers the interconnectedness of environmental, economic, and social 

dimensions in sustainability assessments. 

9.21.4 Insights on the Integration of DT and Blockchain into the LCSA framework 

Applying LCSA in the construction industry is not without its obstacles, both in research 

and practice; managing a vast amount of data is necessary when considering all functional and 

technical requirements of a built asset throughout its life cycle [2]. In this vein, the integration 

of BIM-based DT and blockchain technologies within the LCSA framework signifies a 

paradigm shift in sustainable construction practices.  

Particularly, a critical aspect of our study involves the data's origin from IoT sensors, 

intricately connected to a 3D building model as a building DT. This ensures that predictions are 

firmly rooted in real-time conditions. By anchoring LCSA in real-world data, the framework 

contributes to the dynamic and comprehensive evaluation of sustainability in building projects, 

furthering the objectives of this research. Besides, the software's focus on energy consumption, 

a pivotal impact category spanning environmental, economic, and social dimensions, 

contributes to the dynamic and comprehensive evaluation of sustainability in building projects. 

It is understood that, over time, the DT implementation will become even more vital, 

accommodating unforeseen changes throughout the building's life cycle that were not 

considered in the static LCSA during the design stage. 
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The developed algorithm, combining automated machine learning predictions with IoT-

driven adaptability, represents a novel and flexible tool for predicting energy consumption. 

Importantly, this tool serves as a foundational component in the broader LCSA scheme, 

contributing to the dynamic and comprehensive assessment of sustainability in building 

projects. By focusing on energy consumption as a critical impact category, the software ensures 

that LCSA encompasses environmental, economic, and social dimensions, thus addressing the 

research question posed in this paper. 

Ultimately, the integration of blockchain technology addresses critical aspects of data 

security, integrity, and transparent collaboration within the LCSA framework. Blockchain's 

immutability safeguards the integrity of the data collected from IoT sensors, ensuring that 

predictions and assessments are transmitted as trustworthy information. While blockchain 

introduces performance and scalability considerations, its role in securing and verifying real-

time data, especially concerning privacy-sensitive information, is crucial. As blockchain 

technology matures, its potential to become a cornerstone in data analytics and machine 

learning applications, particularly in scenarios involving personal privacy, is evident. 

 CONCLUSION 

This study aimed to address the challenges that hinder sustainability assessments in the 

construction industry. These challenges include the lack of standardized approaches, reliance 

on static data, and the significant amount of data required for life cycle assessments. 

Particularly, the use of static data can lead to a lack of consideration for changes over time, 

which can impact the reliability of LCSA findings. Therefore, this paper elaborated on 

integrating key concepts, namely DT and blockchain, to address the challenges the construction 

industry faces in embracing sustainability comprehensively.  

Based on the Design Science Research methodology, the exploration proposed 

culminated in developing an advanced software application tailored for application in diverse 

building projects. This is a machine learning-based software application that integrates BIM-

based DT and blockchain technology into the LCSA framework. LCSA provides a holistic 

evaluation of the environmental, economic, and social dimensions of buildings. The BIM-based 

DT model provides a real-time digital representation of the physical building throughout its life 

cycle. Finally, blockchain addresses critical aspects of data security, integrity, and user privacy, 

a cornerstone in sustainable construction practices. This integration aims to create a dynamic, 



357 
 

real-time, and secure framework for sustainability assessments across the entire life cycle of 

buildings. 

In turn, the comparative analysis between static and dynamic LCSAs conducted in this 

study aimed to showcase the transformative potential of the integrated technologies. By 

transitioning from a static to a dynamic approach, the research illustrated improvements, 

discrepancies, and nuanced insights gained. The outcomes of this comparative study contribute 

essential knowledge to sustainable construction practices, underscoring the effectiveness of the 

proposed framework in enhancing the comprehensiveness and accuracy of sustainability 

assessments in building projects. 

Demonstrated through a real-world case study on a typical Brazilian structure, this 

integration represents a great effort to provide practical solutions to the challenges faced in 

construction sustainability. Notably, the sum of non-renewable and renewable energy demand 

increased by 20.37% and 19.70%, respectively, from the static LCSA to the dynamic LCSA 

calculated after 12 months of real-time data collection. These outcomes underscore the 

effectiveness of the proposed framework in enhancing the comprehensiveness and accuracy of 

sustainability assessments in building projects. 

While acknowledging the promising results of integrating DT and blockchain to achieve 

a dynamic LCSA process, a number of limitations remain to be addressed. The specificity of 

the case study, while providing valuable insights and validating the proposed framework, 

necessitates caution in extrapolating the results universally. Future research should focus on 

diversifying case studies to fortify the robustness and applicability of the integrated approach 

across varied construction projects. This acknowledgment emphasizes the need for continuous 

exploration and refinement in pursuing sustainable construction practices. 

Besides, while blockchain enhances data integrity, considerations must be 

acknowledged. Blockchain can introduce performance and scalability issues, primarily when 

implemented on a large scale. The added layer of complexity means that developers and users 

must understand how to interact with and maintain the blockchain. Additionally, as a relatively 

new technology, it may not always be the best solution and should be applied carefully, 

considering the specific use cases and requirements. Therefore, through rigorous exploration 

and analysis, future research aims to illuminate the transformative potential of these integrated 

technologies and their collective impact on sustainability practices in the construction sector. 
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APPENDIX E – SHEAR STRENGTH OF SAND-LIGHTWEIGHT CONCRETE 

DEEP BEAMSWITH STEEL FIBERS 

This chapter is published as a Paper at ACI Structural Journal. 

10.14359/51729347 

 

GARCIA, Sergio; PEREIRA, Alonso; PIEROTT, Rodrigo. Shear 

Strength of Sand-Lightweight Concrete Deep Beams with Steel Fibers. In: ACI 

Structural Journal. No. 118-S40. 

 

Chapter 8 explores the shear strength of sand-lightweight concrete deep beams 

reinforced with steel fibers. This chapter investigates how this combination can achieve both 

high strength and reduced weight, making it a promising solution for modern construction 

challenges that demand both performance and efficiency. 

 

ABSTRACT 

Buildings play Six deep beams without transversal reinforcement made of sand-

lightweight concrete and six deep beams made of sand-lightweight concrete with 1.0% of steel 

fibers were tested and compared with conventional concrete deep beams with and without 

fibers. The shear-span to deep beam height (a/h) was 0.5, 0.8, and 1.0. The cross section heights 

were 400, 600, and 700 mm (15.7, 23.6, and 27.6 in.). The deep beams were tested to failure 

under a four-point bending test, using a hydraulic actuator with 500 kN (674 kip) capacity load 

cell. After testing, it was concluded that the shearstrength values were smaller in larger span 

deep beams. The presence of steel fibers increased the maximum strength and contributed 

quantify to the strength to diagonal cracking. The maximum shear load in steel fiber deep beams 

increased by approximately 16%. The size effect was more significant in sand-lightweight 

concrete deep beams. Besides, it was proposed a coefficient to validate the cracking strut-and-

tie model (CSTM) to evaluate the applicability in deep beams of sand-lightweight concrete with 

and without steel fibers and the experimental maximum shear predictions are compared 

according to some codes for sand-lightweight concrete deep beams and by codes and some 

codes and researchers for sand lightweight concrete deep beams with steel fibers.. 

 

Keywords: 

Deep Beams, Sand-Lightweight, Shear, Steel Fibers. 
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 INTRODUCTION 

Deep beams are structural elements employed in building fronts, transition beams, and 

water tank reservoirs, as well as in geotechnical structures, underground containment elements, 

underground or garage floor curtains, and piling crown blocks in offshore structures. 

There are many advantages of using structural lightweight concrete (SLC). The cost of 

transporting precast elements made of lightweight materials that are less expensive than those 

made of standard conventional weight materials. Offshore structures also require that the 

elements be more buoyant and easier to tow. Other good properties of SLC are: 

cost/effectiveness (good cost and high durability ratio), good compressive and fire resistance, 

good acoustic and thermal control, among others. However, shear strength along a plane in 

lightweight concrete is lower than in ordinary concrete structures. This occurs because 

lightweight aggregates allow cracks to propagate easily through them instead of deviating the 

cracks around them, as it happens in low strength concretes. In lightweight concretes, cracking 

is associated with aggregate fragmentation since aggregate strength is comparable to matrix 

strength and the resulting “smooth-face crack” is less effective in shear stress transmission.1-4 

Researches using lightweight concrete deep beams5-7 have concluded that the use of 

lightweight concrete leads to lower ultimate shear strengths when compared to normal weight 

concrete (NWC). Yang6 and Yang et al.8 noted that the influence of overall depth (h) on the 

propagation and distribution of cracks in lightweight concrete deep beams is similar to that of 

conventional concrete deep beams. Yang6 reported that the ratio of the first diagonal crack 

strength to the ultimate strength for lightweight concrete deep beams increased slightly with the 

increase the ratio of shear-span to beam height (a/h) and h, showing that a higher ratio appeared 

in all-lightweight concrete (ALWC) deep beams than in sand-lightweight concrete (SLWC) 

deep beams. 

To overcome the disadvantages of lightweight concrete, the addition of fibers is an 

effective alternative solution. There is high stress concentration at the end of a crack, and no 

stress propagation is observed. When the stress reaches the matrix strength, the concrete 

ruptures abruptly. By adding fibers to the matrix, the material gains ductility and increases its 

stiffness. This happens because fibers are used as stress transfer bridges, increasing the 

element's strength, and avoiding rupture. Several studies9-12 on deep beams reinforced with 

fibers in NWC have been carried out. It was concluded that fibers’ addition increases the 

maximum strength, and the rupture is more ductile. 



364 
 

Chen et al.13 stated that the rupture mechanism and the deep beam load capacity are 

governed essentially by shear. Therefore, the size effect becomes inevitable. According to the 

findings presented in Chen et al.,13 the size effect on deep concrete beams can be explained by 

the fragility of the material, and the energy release rate in cracked planes. By increasing h, the 

value of the shear span increases, therefore the energy-releasing zone along the crack length 

also increases. Also, it has been reported13 that the shear strength of reinforced concrete (RC) 

beams decreases as the beam depth increases. Conventional concrete deep beams14,15 with 

and without fiber addition have been analyzed regarding the size effect. Birrcher et al.14 

concluded that the maximum diagonal crack width at a given percentage of the maximum 

applied load tended to increase as the overall depth of the member increased from 584 to 1067 

mm (23 to 42 in.), but not from 1067 to 1905 mm (42 to 75 in.), reducing shear strength. 

Shuraim and El-Sayed15 stated that the shear stresses at failure appeared to decrease with the 

increase of beam depth indicating size effect. Chen et al.,13 who studied the behavior of SLWC 

and ALWC deep beams, showed that the size effect in low weight concrete (LWC) deep beams 

was more significant than in NWC deep beams. Furthermore, the effect of overall section depth 

on the ultimate shear stress was slightly greater in SLWC deep beams compared to ALWC deep 

beams. 

On the presented subject and with the aim of study the size effect in deep beams with 

incorporations of fibers, sand-lightweight fiber concrete (SLWFC) deep beams were studied. 

Considering the latest research regarding this subject, to add other elements not yet 

studied, lightweight concrete deep beams with the addition of steel fiber were studied. This 

paper presents the results of twelve deep beams, six of concrete with lightweight coarse 

aggregates, and six with lightweight coarse aggregates with insertion of 1% steel fibers. The 

size effect of these SLWC and SLWFC deep beams are compared with those of conventional 

concrete and fiber-reinforced conventional concrete deep beams. 

 RESEARCH SIGNIFICANCE 

Even though lightweight concrete exhibits many advantages, especially weight 

reduction, it has a more fragile rupture and less shear strength than conventional concrete. The 

latter is due to the decrease in its aggregate interlocking effect. Therefore, the incorporation of 

steel fibers in deep beams without transversal reinforcement may increase the shear capacity 
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and reducing fragility when the ultimate capacity is reached. It was also aimed to evaluate the 

size effect in SLWFC deep beams. 

 EXPERIMENTAL INVESTIGATION 

9.26.1 Materials 

Four batches of concrete were made to cast the beams. The concrete was in a metal 

formwork capable of shaping up to three deep beams at a time, with flexible molding for size 

and length. The concrete was compacted in the formwork with the aid of a needle-type 

immersion vibrator. A Brazilian type V portland cement (high early strength cement16) was 

used. The consistency of the concrete was obtained by the slump test17 and is equal to 45 mm 

(0.1 in.) for both concrete types (SLWC and SLWFC). For each concrete, six cylindrical 

specimens of dimensions 200 x 100 mm (7.8 x 3.9 in.) were produced: three for the compressive 

strength test18 and three for the diametral tensile strength test,19 and both tested at 28 days.  

For the production of the concrete, it was used expanded clay as coarse aggregate, 

produced (known as expanded clay 1506) and quartz sand as fine aggregate from the RJ. Table 

1 presents the properties of the used aggregates. Table 2 shows the composition of the concretes 

used in this research. Highrange water-reducing admixture was used, and its amount was 

calculated in relation to cement consumption. Table 3 shows the real specific mass, compressive 

strength (fcm), and diametral tensile strength (fct,sp) of the tested concretes. 

Table 6.1 - Properties of materials. 

 

Table 6.2 - Composition of concretes. 
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Table 6.3 - Properties of SLWC and SLWFC. 

 

 

The fibers used to produce the SLWFC were of metallic type with end anchor, with 33 

mm (1.3 in.) in length, 0.55 mm (0.02 in.) in diameter, form factor of 60, 7850 kg/m3 of specific 

mass and 1100 MPa (160 ksi) of tensile strength. The amount of fiber added to concrete was 

1.0% in volume, corresponding to 78.5 kg/m3. 

After 24 hours of concreting, the deep beams were demoulding and covered with a damp 

blanket. The cylindrical specimens were submerged into water until the age of 28 days to ensure 

the concrete curing process. 

9.26.2 Details of deep beams 

In each group, three deep beams were considered with shear-span to overall height ratio 

a/h = 0.5—two with a/h = 1.0 and one with a/h = 0.8—and h of 400, 600, and 700 mm (15.7, 

23.6, and 27.6 in.) as shown in Table 4. 

The beam’s nomenclature was divided into three parts. The first one refers to the 

concrete type: SLCB for sandlightweight concrete beams and SLFCB for sand-lightweight fiber 

concrete beams. The second part refers to the shearspan to overall height of a/h: 05 for a/h = 

0.5; 08 for a/h = 0.8; and 10 for a/h = 1.0. The third part refers to the deep beam height: 4 for h 

= 400 mm (15.7 in.); 6 for h = 600 mm (23.6 in.); and 7 for h = 700 mm (27.6 in.). 
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Table 6.4 - Details of deep beams. 

 

All the deep beams had the same width, bw = 150 mm (5.9 in.). The distance between 

the load application points was constant and equal to 200 mm (7.8 in.). The length (L) of each 

deep beam varied according to the shear-span to overall height ratio a/h and the h. Bars of 10.0, 

12.5, and 16.0 mm (0.4, 0.5, and 0.6 in.) in diameter were distributed in two layers to compose 

the longitudinal tension reinforcement. Figure 1 shows the cross section details of the deep 

beams, including the longitudinal tension reinforcement arrangement. 

Figure 6.1 - Detail of longitudinal tension reinforcement of deep beams: (a) shear-span to overall 
height ratio a/h = 0.5, h = 400 m (15.7 in.); (b) a/h = 0.5, h = 600 mm (23.6 in.), (c) a/h = 0.5, h = 
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700 mm (27.6 in.), (d) a/h = 1.0, h = 400 mm (15.7 in.); (e) a/h = 1.0, h = 600 mm (23.6 in.); and (f) 
a/h = 0.8, h = 700 mm (27.6 in.). 

 

The longitudinal tension reinforcement (ribbed bars) was continuous throughout the 

length of the beam and welded to its ends on carbon steel plates to provide the required 

anchorage (refer to Fig. 2). This technique ensured the cover and spacing between the bars 

throughout the length of the beam. 

9.26.3 Instrumentation and testing procedures 

The deep beams have undergone four-point bending tests, performed at a metallic 

structure frame-type with a hydraulic actuator model 244.41, which was coupled to a 500 kN 

(112 kip) capacity load cell. The system was controlled by the hydraulic unity that registered 

in real-time the applied loading at a 100 Hz acquirement frequency, and the tests were 

performed under displacement control at a speed of 0.3 mm/s.  

 

Figure 6.2 - Detail of longitudinal tension reinforcement welded in carbon steel plate.. 
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The deep beams were positioned under a metal frame, as shown in Fig. 3, and the loads 

were applied on a metal profile that transferred the load to the beam through two 100 x 150 x 

20 mm (3.9 x 5.9 x 0.7 in.) metal plates, 200 mm (7.9 in.) apart. Figure 4 illustrates the test 

scheme and experimental instrumentation. The vertical displacement was monitored by a linear 

variable differential transformer (LVDT), located under the beam in the middle of the span 

length. 

Figure 6.3 - Metal frame used in test. 
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Figure 6.4 - Test scheme and instrumentation of deep beams. 
 

Table 6.5 - Summary of experimental results. 
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 EXPERIMENTAL RESULTS AND DISCUSSION 

9.27.1 Relationship between load versus vertical displacement 

Figures 5 and 6 show the load curves versus vertical displacement of the SLWC and the 

SLWFC deep beams with a shear-span to overall height ratio of a/h = 0.5 and a/h = 0.8 and 1.0, 

respectively. 

Figure 6.5 - Load versus vertical displacement curves of deep beams with shear-span to overall 
height ratio of a/h = 0.5. 
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Figure 6.6 - Load versus vertical displacement curves of deep beams with shear-span to overall 
height ratio of a/h = 0.8 and 1.0. 

 

For the same load levels, it can be seen that the SLWFC deep beams had less vertical 

displacements. Exceptionally the deep beams SLCB087 and SLFCB087 did not behave as 

expected. As previously confirmed by Narayan and Darwish,20 it can be seen that the insertion 

of 1.0% of steel fiber reduces the vertical displacements of the deep beams at all stress levels. 

This reduction occurs because steel fibers delay the appearance of cracks. Also, the fibers sew 

the microcracks, making their propagation more difficult and increasing the aggregate interlock. 

It can also be observed that the deep beams with shearspan to overall height ratio of a/h 

= 0.8 and 1.0 presented greater vertical displacements than their corresponding ones of a/h = 

0.5. This occurs because of the greater the shear span, the lower the stiffness. 

9.27.2 Diagonal cracking shear and maximum normalized 

Table 5 shows the diagonal cracking shear (τcr = Vcr/bwd) and maximum (τmax = 

Vmax/bwd) normalized by √fcm, as well as the difference between both quantities. 

The strength to diagonal cracking for SLWC deep beams with a shear-span to overall 

height ratio of a/h = 0.5 was approximately 45.8 to 54% of the maximum shear, with an average 
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value of 52.6%; for those with a shear-span to overall height ratio of a/h = 0.8 and 1.0, the 

values ranged from 59.4 to 71.6% of the maximum shear, with an average of 66.6%. 

For SLWFC deep beams, the strength to diagonal cracking of the ones with a shear-span 

to overall height ratio of a/h = 0.5 ranged from 35.7 to 52.7% of the maximum shear, with an 

average value of 47.2%; while for those with a shear-span to overall height ratio of a/h = 0.8 

and 1.0, the strength to diagonal cracking was between 44.6 to 53.9% of maximum shear, with 

an average value of 53.1%. 

The deep beams with a shear-span to overall height ratio of a/h = 0.5 (SLFCB054, 

SLFCB056, and SLFCB057) with their SLWC replicas, it could be noticed an increase in 

diagonal cracking shear of 28.6, 18.2, and 29.2%, respectively. The deep beams with a shear-

span to overall height ratio of a/h = 1.0 and 0.8 (SLFCB104, SLFCB106, and SLFCB087) 

exhibited an increase in diagonal cracking compared to their SLWC replicas equal to 21.1, 40.9, 

and 58.5%, respectively. The average increase value for the deep beams with a shearspan to 

overall height ratio of a/h = 0.5 was 25.3%, while for the ones with a shear-span to overall 

height ratio of a/h = 1.0 and 0.8, it was 60.2%. 

The deep beams with a shear-span to overall height ratio of a/h = 0.5 (SLFCB054, 

SLFCB056, and SLFCB057), when compared to their SLWC replicas, showed an increase in 

the maximum shear load of 15.3, 18.3, and 18.7%, respectively. An increase in maximum shear 

was also found in deep beams with a shear-span to overall height ratio of a/h = 1.0 and 0.8 

(SLFCB104, SLFCB106, and SLFCB087) in relation to their SLWC replicas, as values being 

8.6, 17.8, and 18.9%, respectively. The average increase value for the deep beams with a shear-

span to overall height ratio of a/h = 0.5 was 17.4%, while for the ones with a shear-span to 

overall height ratio of a/h = 0.8 and 1.0 was 15.1%. In comparison, Mansur and Ong21 obtained 

an increase in load capacity of 16.3% by inserting 1% of metallic fibers in the conventional 

concrete deep beam, with shear-span to overall height ratio a/h = 1.14. 

It can be seen that the SLWC deep beams presented lower shear strength than their fiber-

reinforced concrete replicas. Thus, the presence of sand-lightweight coarse aggregates in the 

cracking planes reduces stress transfer capability due to decreased aggregate interlocking 

action. 
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9.27.3 Rupture mode 

The rupture planes in all tested beams were formed along the diagonal cracks that joined 

the load and reaction points. However, the rupture mode was different for each concrete type. 

In general, the SLWC deep beams are ruptured by diagonal compression. After the 

formation of the first crack in one of the spans, the other cracks formed in a parallel manner to 

the first one and propagated towards the point of load and support, followed by the rupture in 

one of the cracks, generating a strut, followed by rupture on one side by shear (Fig. 7). The 

widths of the strut were measured after rupture and it was found that they measured 

approximately the same value as the width of the support plates and application loads—that is, 

100 mm (3.9 in.). The SLWFC deep beams presented cracking or diagonal tensile rupture, 

where there was the formation of inclined cracks, and then, due to the effect of the fibers 

addiction, the openings were reduced (Fig. 7). 

Figures 8(a) and (b) show the rupture type of the SLWC deep beams and SLWFC deep 

beams, respectively. Figures 8(c) and (d) show the formed strut and its width, having a smooth 

surface with expanded clay cutting. 

9.27.4 Size effect on maximum shear capacity 

To evaluate the size effect on the SLWC deep beams, the values of Log h versus Log 

τmáx/√fcm are plotted in Fig. 9 for the deep beams with a shear-span to overall height ratio of 

a/h = 0.5, 0.8, and 1.0. The angular coefficient of the trend lines is shown caption.  

It turns out that the concrete type influences the slope of these curves. This indicates the 

action of the fibers on the size effect due to the reduction of crack openings by making the 

aggregate interlocking more effective, and thus reducing the size effect on the SLWFC deep 

beams.  

It is also observed that the shear-span to overall height ratio a/h influences the inclination 

of these curves, being softer for the deep beams with a shear-span to overall height ratio of a/h 

= 0.5. This demonstrates that the size effect was more significant in the deep beams with a 

shear-span to overall height ratio of a/h = 0.8 and 1.0. 
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9.27.5 Chen et al.’s model 

The model proposed by Chen et al.22 for calculating the ultimate shear capacity, based 

on the experimental phenomena of diagonal crack patterns and strain distribution of 

longitudinal bars in shear span were considered. Mattock et al.1 evaluated the behavior of the 

model for deep beams in determining the ultimate shear capacity from experimental data of 

concrete with normal density in deep beams without core reinforcement, with vertical web 

reinforcement, plus ones with horizontal and vertical web reinforcement. Considering the 

statistical parameters, this model was the one that best fit the samples’ behavior compared with 

others evaluated. 

In this work, the cracking strut-and-tie model (CSTM) was used to evaluate its 

applicability to SLWC and SLWFC deep beams. This CSTM divides the diagonal strut in two 

parts: one is not affected by the flexural-shear cracks (Fsi) and the other the effective 

compressive strength of the part below the critical shear crack is derived from the forces 

transferred by the aggregate interlock, web reinforcement, and dowel action of longitudinal bars 

on the critical shear crack surface (Fsc). These methods suggest the shear strength of deep 

beams by the failure of concrete struts as follows. 

 

where sci and scc are the effective compressive strength of the uncracked and cracked 

parts of the strut, respectively; wsi and wsc are the strut widths; b is the beam width; and θ is 

the angle between the strut axis and the longitudinal bars. 

The results obtained when the CSTM method was applied to these types of concrete 

proved to be unsafe. Thus, a general reduction coefficient was applied to the values obtained 

by the CSTM to obtain a result closer to the experimental ones. 

Statistical analysis with several values multiplied by the τCSTM/τexp value was 

performed aiming to obtain mean values closer to 1 and with lower standard deviation. Table 6 

shows the mean τCSTM/τexp values closest to 1 obtained from applying the reduction 

coefficient (λ). 
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It was found that this method was effective in determining the ultimate shear capacity 

and predicting the size effect in SLWC deep beam, providing a λ = 0.70 and to SLWFC deep 

beams, a λ = 0.80. 

In Fig. 10, the values of Log h versus Log τmax/√fcm are plotted from the deep beams 

tested in this study and those obtained using CSTM, applying the coefficients obtained earlier. 

 



377 
 



378 
 

Figure 6.7 - Cracking pattern of tested deep beams. 
 

Table 6.6 - Mean values and standard deviation of τCSTM/τexp applied to various values of λ. 

 

Figure 6.8 - Rupture mode of deep beams and strut: (a) SLWC; (b) SLWFC; (c) formed strut in 
SLWC; and (d) strut width equal to bearing plate and supports. 
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9.27.6 Influence of concrete type on maximum shear strength 

Figures 11 and 12 plot the values of Log h versus Log τmax/√fcm, in SLWC deep beams 

with a shear-span to overall height ratio of a/h = 0.5 and a/h = 0.8 and 1.0, respectively. The 

angular coefficient of the trend line obtained from their experimental data appears. 

 

 

Figure 6.9 - Log. τmax/√fcm versus Log h of deep beams with shear-span to overall height ratio 
of a/h = 0.5, 0.8, and 1.0. 
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Figure 6.10 - Predicting size effect in SLWC deep beam: (a) with shear-span to overall height 
ratio of a/h = 0.5 and (b) a/h = 0.8 and 1.0, and SLWFC deep beam: (c) with a/h = 0.5 and (d) a/h 

= 0.8 and 1.0. 
 

Conventional concrete deep beams showed higher maximum shear values when 

compared to sand-lightweight or all-lightweight concrete deep beams. 

The deep beams studied by Shuraim and El-Sayed15 and Chen et al.13 showed that the 

size effect is more significant as concrete density decreases. However, the found slopes in 

SLWFC deep beams outfit the values for conventional concrete deep beams. 
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9.27.7 Comparison between experimental maximum shear and calculated by standards 

and equations 

Table 7 presents the experimental maximum shear predictions calculated according to 

NBR 6118-14,23 code ACI 318-14,24 CSA A23.3-0425 for SLWC deep beams, and the 

coefficient γcs, which is the shear-span to overall height ratio between the value calculated by 

theoretical equations and experimental value. The codes suggest the shear strength of deep 

beams by the failure of concrete struts as follows, respectively 

 

where αv2 = 1 – fck/250, fck is the characteristic compressive strength of concrete 

 

where ϕ is a reduction coefficient 

 

where ϕc = 0.65. 

Table 8 shows the experimental predictions for SLWFC deep beams calculated from the 

equations proposed by ACI 544-88,26 Li et al.,10 and Shahnewaz and Alam,27 and the 

coefficient γcs. The codes suggest the shear strength of deep beams by the failure of concrete 

struts as follows, respectively 

 

where ft = 0.78 fc 

Where ρ is the longitudinal reinforcement rate. 

 

where Vf is the volume of fibers, and lf/df is the factor of the form of fibers. 
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Table 6.7 - Summary of experimental and theoretical results for SLWC deep beams. 

 

Table 6.8 - Summary of experimental and theoretical results for SLWFC deep beams. 

 

Figures 13 and 14 show the relationship between calculated and experimental shear 

values. The line at 45 degrees indicates a coefficient γcs = 1.0. 
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Figure 6.11 - Influence of height on normalized maximum shear strength of deep beams with 
shear-span to overall height ratio of a/h = 0.5. 

 

For the SLWC deep beams, the predictions obtained by the considered codes were 

conservative for deep beams with a shear-span to overall height ratio of a/h = 0.5 because they 

presented a mean value of γcs below 1.0. The predictions were lower than the experimental 

loads for deep beams with a shear-span to overall height ratio of a/h = 0.8 and 1.0. However, 

the ACI 318-143  equation proved to be the most effective in predicting the ultimate loads for 

the deep beams with a shear-span to overall height ratio of a/h = 0.5, as they presented an 

average of γcs = 0.95. In contrast, the deep beams with a shear-span to overall height ratio of 

a/h = 0.8 and 1.0 γcs equal 1.0. 

 

 

Figure 6.12 - Influence of height on normalized maximum shear strength of deep beams with 
shear-span to overall height ratio of a/h = 0.8 and 1.0. 

 

For SLWFC deep beams, the code predictions of ACI 544-8826 and Li et al.10 were 

very conservative, generating a meager γcs value, which shows that the deep beams reached 

higher shear capacities than expected. Li et al.10 provided more accurate loading results than 

ACI 544-8826 for shear-span to overall height ratios of a/h = 0.8 and 1.0. Yet, some deep beams 

ruptured before the expected shear capacity, and others were below expectations. Nevertheless, 

Shahnewaz and Alam’s model27 presented an average γcs value closer to 1.0, showing that it 

was the most efficient equation to predict the maximum shear. 
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Figure 6.13 - Comparison between calculated and experimental maximum shear for SLWC deep 
beams. 

 

 Figure 6.14 - Comparison between calculated and experimental maximum shear for SLWFC 
deep beams. 
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 CONCLUSIONS 

The following conclusions are drawn from the present study: 

1. The values of maximum and diagonal cracking stresses of deep beams with shear-

span to overall height ratios of a/h = 0.8 and 1.0 were lower when compared to their replicas 

with a shear-span to overall height ratio of a/h = 0.5. Thus, it was concluded that the shear 

strength mechanisms was lower in larger shear span deep beams; 

2. The maximum shear in SLWFC deep beams was 17.4% for a shear-span to overall 

height ratio of a/h = 0.5 and 15.1% for a shear-span to overall height ratio of a/h = 0.8 and 1.0; 

3. The fibers reduced crack opening and made aggregate interlocking more effective. 

Thus, there was attenuation in the slope of the Log h versus τmax/√fcm curves. It was concluded 

that the size effect was less significant in the SLWFC deep beams; 

4. The size effect was more significant in SLWC deep beams in a shear-span to overall 

height ratio of a/h = 0.8 and 1.0 in comparison to deep beams in a shear-span to overall height 

ratio of a/h = 0.5; 

5. SLWC and SLWFC deep beams had lower maximum shear strength than 

conventional concrete deep beams; 

6. The analysis performed showed that the model proposed by Chen et al.22 is applicable 

to SLWC deep beam and SLWFC deep beam; The coefficients λ were 0.7 and 0.8, respectively; 

7. The requirements of NBR 6118-1423 and CSA A23.3- 0425 were not effective in 

predicting the maximum shear of SLWC deep beams. The ACI 318-1424 equation proved to 

be the most effective, generating an average value of γcs closest to 1.0; 

8. ACI 544-8826 and Li et al.10 were not accurate in predicting maximum shear in 

SLWFC deep beams. However, the equation proposed by Shahnewaz and Alam27 proved to 

be very effective with mean values of γcs closer to 1.0. 
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