
REDESIGNING THE LHCB COLLABORATION MANAGEMENT

SYSTEM: FROM A FRAMEWORK-BASED MONOLITH TO A

DDD AND HEXAGONAL ARCHITECTURE-INSPIRED

MODULAR MONOLITH

Gabriel José Souza e Silva

Projeto de Graduação apresentado ao Curso

de Engenharia de Controle e Automação da

Escola Politécnica, Universidade Federal do

Rio de Janeiro, como parte dos requisitos ne-

cessários à obtenção do t́ıtulo de Engenheiro.

Orientador: Flávio Luis de Mello

Rio de Janeiro

Junho de 2024

Declaração de Autoria e de Direitos

Eu, Gabriel José Souza e Silva CPF 062.777.747-35, autor da monografia RE-

DESIGNING THE LHCB COLLABORATION MANAGEMENT SYSTEM: FROM

A FRAMEWORK-BASED MONOLITH TO A DDD AND HEXAGONAL ARCHI-

TECTURE INSPIRED MODULAR MONOLITH, subscrevo para os devidos fins,

as seguintes informações:

1. O autor declara que o trabalho apresentado na disciplina de Projeto de Graduação

da Escola Politécnica da UFRJ é de sua autoria, sendo original em forma e conteúdo.

2. Excetuam-se do item 1. eventuais transcrições de texto, figuras, tabelas, conceitos

e idéias, que identifiquem claramente a fonte original, explicitando as autorizações

obtidas dos respectivos proprietários, quando necessárias.

3. O autor permite que a UFRJ, por um prazo indeterminado, efetue em qualquer

mı́dia de divulgação, a publicação do trabalho acadêmico em sua totalidade, ou em

parte. Essa autorização não envolve ônus de qualquer natureza à UFRJ, ou aos seus

representantes.

4. O autor pode, excepcionalmente, encaminhar à Comissão de Projeto de Graduação,

a não divulgação do material, por um prazo máximo de 01 (um) ano, improrrogável,

a contar da data de defesa, desde que o pedido seja justificado, e solicitado anteci-

padamente, por escrito, à Congregação da Escola Politécnica.

5. O autor declara, ainda, ter a capacidade juŕıdica para a prática do presente ato,

assim como ter conhecimento do teor da presente Declaração, estando ciente das

sanções e punições legais, no que tange a cópia parcial, ou total, de obra intelec-

tual, o que se configura como violação do direito autoral previsto no Código Penal

Brasileiro no art.184 e art.299, bem como na Lei 9.610.

6. O autor é o único responsável pelo conteúdo apresentado nos trabalhos acadêmicos

publicados, não cabendo à UFRJ, aos seus representantes, ou ao(s) orientador(es),

qualquer responsabilização/ indenização nesse sentido.

7. Por ser verdade, firmo a presente declaração.

Gabriel José Souza e Silva

iii

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Eletrônica e de Computação

Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária

Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que

poderá inclúı-lo em base de dados, armazenar em computador, microfilmar ou adotar

qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bib-

liotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja

ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que

sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

iv

AGRADECIMENTO

Os resultados apresentados neste trabalho jamais seriam alcançados sem minha

famı́lia, amigos e professores. A estes, devo um eterno agradecimento. Principal-

mente, agradeço à minha mãe, Marize, e ao meu pai, Márcio, por todo o suporte

e incentivo ao longo de toda a vida. Ambos, através de muito esforço, sempre me

proporcionaram todos os insumos necessários para seguir com minha formação, além

de serem minha fonte eterna de inspiração. Agradeço também à minha avó Ciléia

pelo exemplo de trabalho e dedicação e por todo o carinho a mim dado. Agradeço

também à minha namorada, Carol, por nunca ter me deixado desistir, estando pre-

sente mesmo quando estive a 9200 km de distância.

Agradeço aos professores que me ensinaram não só conhecimentos técnicos, mas

também a importância do pensamento cient́ıfico e da educação. Em especial, agrade-

ço aos meus professores do CEFET UnED Nova Friburgo por terem constrúıdo o

pilar sustentador da minha formação.

Obrigado também aos meus amigos de infância, Arthur, Tomás, Lúcio e Bruno,

com os quais compartilhei a maior parte da vida. Obrigado também aos amigos da

UFRJ que, através de muito trabalho em equipe, tornaram a jornada na Universi-

dade mais leve.

Agradeço também àqueles que foram minha famı́lia na Súıça: Mário, Gabriel,

Michelly, Gustavo, Marcelo, Leandro e Babi pela companhia em momentos que tanto

precisei e pelos ensinamentos compartilhados. Agradeço também à Carmen, Joel e

Glória por manterem o projeto Glance vivo, produzindo sistemas fundamentais para

o funcionamento dos experimentos no CERN e transformando completamente a vida

de todos aqueles que por ele passam.

Devo também reconhecer a contribuição da sociedade brasileira que financiou

minha educação média, técnica e superior, possibilitando não só o desenvolvimento

pessoal como também da sociedade como um todo, reduzindo a desigualdade no

páıs.

v

RESUMO

O experimento Large Hadron Collider beauty (LHCb) no CERN especializa-se

em investigar as sutis diferenças entre matéria e antimatéria. A gestão eficaz dos

esforços colaborativos entre membros e instituições é cŕıtica para o sucesso do expe-

rimento geo-distribúıdo. Este trabalho detalha a refatoração da Aplicação Web de

Membership do LHCb de uma arquitetura monoĺıtica baseada em framework para

uma arquitetura de Monolito Modular. Enfatizando o prinćıpio de Segregação de

Responsabilidades, o projeto busca melhorar a modularidade, encapsulamento e es-

tratificação, estabelecendo limites claros entre frontend e backend, que se comunicam

por meio de um contrato de API imutável. Além disso, o processo de refatoração

inclui revalidação e coleta de novos requisitos de software para alinhar o Membership

mais estreitamente com os fluxos de trabalho realizados no dia-a-dia da colaboração.

O projeto introduz uma aplicação inspirada em Domain Driven Design, utilizando

a Arquitetura Hexagonal para a implementação concreta. Adicionalmente, foi re-

alizado o desenvolvimento de uma biblioteca de busca para consulta de entidades

no banco de dados resolvendo limitações da implementação anterior e melhorando

a integração de dados com sistemas externos. A necessidade deste projeto surge

das deficiências arquitetônicas do sistema existente, especialmente sua falta de fle-

xibilidade para acomodar novos requisitos e integrar melhorias. Este trabalho de-

lineia os objetivos, escopo, metodologia e justificativa do projeto, fornecendo uma

base para uma análise aprofundada da arquitetura de software e sua implantação.

Também apresenta evidências emṕıricas das melhorias de produtividade alcançadas

pela equipe após a adoção do novo stack tecnológico.

Palavras-Chave: Software architecture, Domain Driven Design, REST API, Search

Tooling, Modular Monolith, CERN, LHCb.

vi

ABSTRACT

The Large Hadron Collider beauty (LHCb) experiment at CERN specializes in

investigating the slight di↵erences between matter and antimatter. E↵ective man-

agement of the collaborative e↵orts among members and institutions is critical for

the geo-distributed experiment’s success. This work details the refactoring of the

LHCb Membership Web Application from a framework-based monolithic to a Modu-

lar Monolith architecture. Emphasizing the principle of Separation of Concerns, the

project seeks to improve modularity, encapsulation, and layering, establishing dis-

tinct boundaries between frontend and backend communicating through a strict API

contract. Furthermore, the refactoring process includes revalidation and collection

of software requirements to align the Membership System more closely with actual

collaboration workflows. It introduces a Domain-Driven Design inspired application,

utilizing the Hexagonal Architecture for the concrete implementation. Additionally,

the development of a search library for querying database entities addresses previ-

ous limitations and enhances integration with external systems. The need for this

project arises from the existing system’s architectural deficiencies, especially its lack

of flexibility to accommodate new requirements and integrate enhancements. This

document delineates the project’s objectives, scope, methodology, and rationale,

providing a foundation for an in-depth analysis of the software architecture and its

deployment. It also presents empirical evidence of the productivity improvements

achieved by the team following the adoption of the new technology stack.

Key-words: Software architecture, Domain Driven Design, REST API, Search

Tooling, Modular Monolith, CERN, LHCb.

vii

ACRONYMS

CERN - The European Organization for Nuclear Research

API - Application Programming Interface

ATLAS - A Toroidal LHC ApparatuS

CMS - Compact Muon Solenoid

ALICE - A Large Ion Collider Experiment

SQL - Structured Query Language

FENCE - Frontend Engine for Glance

JSON - JavaScript Object Notation

LPS - Laboratório de Processamento de Sinais

RFC - Request for comments

COPPE - Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engen-

haria

Poli - Escola Politécnica Da UFRJ

CRUD - Create, Read, Update, Delete

LBEMS - LHCb Equipment Management System

LHC - Large Hadron Collider

CGI - Common Gateway Interface

OOP - Object-Oriented Programming

ORM - Object-Relational Mapping

MVC - Model-View-Controller

SSH - Secure Shell

PUC - Pontif́ıcia Universidade Católica de São Paulo

JQL - Jira Query Language

GQL - Glance Query Language

UI - User Interface

CB - Collaboration Board

EB - Editorial Board

HR - Human Resources

EB - Editorial Board

TL - Team Leader

viii

DDD - Domain-Driven Design

GDPR - General Data Protection Regulation

EU - European Union

EEA - European Economic Area

CORS - Cross-Origin Resource Sharing

FRAPI - The FENCE REST API

SPA - Single-Page Application

GRAPPA - GRoups for APPlications Authorization

SSO - Single Sign-On

SAML - Security Assertion Markup Language

OAS - OpenAPI Specification

DTO - Data Transfer Object

CI/CD - Continuous Integration/Continuous Deployment

CLI - Command Line Interface

CBPF - Centro Brasileiro de Pesquisas F́ısicas

SFC - Single-File Component

BC - Bounded Context

ECGD - Early Career, Gender & Diversity O�ce

CFD - Cumulative Flow Diagram

SDK - Software Development Kit

ix

Contents

1 Introduction 1

1.1 Theme . 1

1.2 Scope . 1

1.3 Justification . 3

1.4 Objectives . 5

1.5 Methodology . 5

1.6 Description . 6

2 Related work 8

2.1 CERN . 8

2.2 Glance & Fence . 9

2.3 Super Search . 11

2.4 The LHCb Membership . 18

2.4.1 Collaboration organization . 19

2.4.2 Business requirements . 23

2.4.3 Workflow Project . 30

2.4.4 Discrete-Event Systems . 34

3 Implementation 40

3.1 Data exchange across CERN systems 40

3.2 Hexagonal architecture . 43

3.3 Frontend architecture . 46

3.4 Authorship Implementation . 52

3.4.1 The Authorship Backend . 54

3.4.2 The Authorship frontend . 65

x

3.4.3 Database . 70

3.4.4 Functionality Summary . 71

3.5 Search Implementation . 73

3.5.1 Backend: search-service . 73

3.5.2 Search frontend . 78

3.6 Membership Implementation . 83

3.6.1 The Membership Architecture 83

3.6.2 Workflow Tracking . 85

3.6.3 Features . 96

4 Results 103

4.1 Cummulative flow chart . 103

4.2 Solved versus created report . 104

4.3 Test coverage . 106

4.4 Adoption by external systems . 107

4.5 Acknowledgements . 108

5 Conclusion 110

Bibliografia 112

6 Stakeholder feedback 115

xi

List of Figures

2.1 Query workspace. 13

2.2 Fence search results. 13

2.3 LHCb newcomer registration procedure. 31

2.4 LHCb newcomer registration PDF form. All information highlighted

in red is already present in CERN’s HR database once this form is

filled by the newcomer. 32

2.5 Workflow Tracking Service draft. 33

2.6 State Transition Diagram example. 36

2.7 State Transition Diagram example with locks. 38

3.1 Hexagonal Architecture visualization from [1] adapted. 46

3.2 Todo Vue app example. 51

3.3 Some of Vuetify’s components shown in Figma. 52

3.4 API documentation example. 57

3.5 Gitlab Pipeline passing on Merge Request. The pipeline steps include

building the backend API with composer install, building the fron-

tend with npm run build, and running the backend integration test

suite. 64

3.6 LatexTitle.vue: Textual component to process latex code. 66

3.7 LoadingModal.vue: Loading popup component. 66

3.8 Vizualize Authors List Page. 71

3.9 Authorship Exceptions tab. 72

3.10 Authorship generated files. 72

3.11 Institute Search Components. 82

3.12 Simpler search visualization to list all Institutes according to their

Participation Type. 82

xii

3.13 Membership Bounded Contexts. 85

3.14 Newcomer registration workflow refactored. 86

3.15 Newcomer Request management page pending Secretariat approval. . 87

3.16 Newcomer registration request graph. 89

3.17 Graph for three Stages A, B, and C. To go from A to B, events x, y,

and z must occur. To go from B to C, events m and n must occur.

A, B, and C are provided by the user and the remaining States are

dynamically generated. 91

3.18 Graph for three Stages A, B, and C. 94

3.19 Membership Member profile. 97

3.20 UFRJ Institute profile. 98

3.21 Change Profession Request being reviewed. 99

3.22 Countries that participate in the LHCb experiment. 99

3.23 Not real (mocked) gender distribution data presented in the Mem-

bership. 100

3.24 LHCb Membership homepage and search interfaces. 101

3.25 Membership inconsistencies report sent weekly via email. 102

4.1 CFD graph extracted from Glance’s Jira board. 104

4.2 Solved vs. Created issues in the LHCb Glanace systems. 105

4.3 Issues according to their type. 106

4.4 Acknowledgement. 109

xiii

List of Tables

2.1 Search elements . 15

2.2 Major roles in LHCb for the Membership 22

2.3 LHCb Membership System Requirements and Role Access 24

2.4 Authorship System requirements . 28

4.1 Test Classes and Number of Tests . 106

xiv

Chapter 1

Introduction

1.1 Theme

This work presents the refactoring of the LHCb (Large Hadron Collider beauty)

Membership Web Application, used by one of the four primary experiments at

CERN (The European Organization for Nuclear Research) to manage its collab-

oration members and institutions. The project focused on transitioning the sys-

tem from a tightly integrated monolithic structure, containing three di↵erent but

loosely connected applications, to a Modular Monolith Web Application. The re-

design emphasized the “separation of concerns” principle, a programming approach

that divides an application into distinct units with minimal overlap in functionality,

achieved through modularization, encapsulation, and arrangement in software lay-

ers [2]. This principle guided the creation of clear boundaries between frontend and

backend modules, which now interact through a strict API (Application Program-

ming Interface) contract.

1.2 Scope

CERN, is a major international center for scientific research in particle physics.

It operates the largest particle physics laboratory in the world, where physicists and

engineers investigate the fundamental components and forces of the universe. The

facility is known for conducting four large experiments: ATLAS (A Toroidal LHC

ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Ex-

1

periment), and LHCb, each designed to study di↵erent aspects of particle physics.

Universities and research centers participate in the experiments at CERN by con-

tributing to various aspects including the design, construction, and operation of

experimental equipment, as well as the analysis of data. Researchers, professors,

and students from institutions globally are involved in these experiments, o↵ering

their expertise and conducting research projects aligned with CERN’s objective.

One significant contribution from UFRJ is Glance, a data retrieval tool developed

during the UFRJ-CERN collaboration for the ATLAS experiment in 2003. Glance

functions as a web application and serves as an intermediary layer between the end-

user and the database. This design enables users to insert and retrieve information

from the database without requiring SQL (Structured Query Language) knowledge,

simplifying data access and manipulation. This technology, by 2013, evolved into the

FENCE (Frontend Engine for Glance) Framework, which is an object-oriented PHP

library that powers web applications configured through JSON (JavaScript Object

Notation) configuration files, allowing some basic input validation and interface cus-

tomization. The Membership System Version 1, created with FENCE, is designed

to manage participants and their a�liations in the LHCb collaboration. This sys-

tem handles tasks such as member employment management, institute cooperation

agreements, data access control, special role assignments (appointments), and au-

tomated authorship list generation. The Membership System became an integral

component of collaboration management. However, an increase in new requirements

highlighted the limitations of FENCE’s configuration-file-based architecture. Sim-

ilar challenges were noted in other FENCE-based systems within the ALICE and

ATLAS collaborations, prompting a collective initiative to seek an alternative solu-

tion by the begging of 2020.

The author was based in Geneva from January 2020 to March 2022 under the

guidance of Professor José Seixas from LPS COPPE/Poli/UFRJ (Laboratório de

Processamento de Sinais) and CERN sta↵ Gloria Corti and Joel Closier. The project

timeline started with authorship development at the beginning of 2020, followed by

the search tool, and finally the membership refactor from mid-2020 to late 2022.

2

1.3 Justification

In scenarios where the existing codebase proves too restrictive or antiquated to

e↵ectively adapt to current requirements or integrate new features, the option to

rewrite the software is often contemplated, as discussed in “Refactoring: Improving

the Design of Existing Code” by Martin Fowler [3]. This approach enables address-

ing the limitations of the past and harnessing creativity in software development.

Instances where rewriting may be necessary include situations where adding new

features is impossible without a complete overhaul, onboarding new developers be-

comes overly complex, the existing platform is no longer supported, or there’s a

need to support a significantly increased user base. Rewriting allows for the adop-

tion of modern interfaces, technologies, and can o↵er a more e�cient system model

based on a deeper understanding of the product’s domain. However, it is important

to recognize that rewrites can be time-consuming, risk introducing new bugs, and

require maintaining both the old and new systems simultaneously [4]. Additionally,

FENCE had been extensively used and expanded during its first 6 years, providing

critical tools such as The GlanceSearchInterface enabling users to perform, repli-

cate, and share data searches, presenting results in a customizable tabular format

with options for CSV and PDF exports with the SuperSearch class expanding this

functionality, allowing for complex searches with multiple parameters, organized log-

ically in a graphical interface for intuitive user interaction and precise search criteria

formation.

Using any framework in application development has intrinsic limitations and

challenges. One of the main issues is that frameworks, while customizable, often

impose design limitations and restrictions. This means that developers need to

adapt their projects to fit within the constraints of the framework, which might

not always align with the business requirements. FENCE apps were structured in

monolithic GitLab repositories containing all systems, which in LHCb were 3: The

Membership, The LHCb equipment Management System (LBEMS) and the LHCb

Cables. Meaning that releases had to consider changes in all of them, even if the

goal is to deploy changes only in one. The lack of documentation, associated with

the high turnover rate in the Glance Team, made changes in the framework itself

3

more risky as unknown side e↵ects could arise in any of the 20 FENCE powered

apps. Consequently, a backlog of issues accumulated over the years and the newly

onboarded developers had an increasingly di�cult to modify the framework code.

Another issue encountered with FENCE was the entanglement of its model-view-

controller inspired layers, often consolidated within a single file. This integration

led to challenges in testing applications, as changes became unpredictable and soft-

ware maintainability was compromised. Due to the high coupling between di↵erent

classes, such as HTTPS request controllers, database manager classes, and frontend

callbacks, input validation was dispersed across these components. Consequently,

this could lead to inconsistent outcomes, such as false positives, where valid data

is incorrectly rejected by the database, or false negatives, where invalid data passes

initial layers but is caught by the database. Moreover, the absence of a clear and

centralized location for business logic validation often resulted in exceptions being

thrown by the database, producing errors that were not meaningful to users or de-

velopers. A typical example is the occurrence of a unique constraint violation error

when trying to insert a duplicate entry into a database table. Such an error message,

while accurate, does not provide context or guidance for resolving the issue.

Furthermore, a notable drawback of FENCE was its reliance on server-side gen-

eration of frontend interfaces. Generating interfaces on the server side can lead to

disadvantages, such as increased response times due to the need for server-side pro-

cessing before content delivery. This approach can also limit dynamic interaction on

the client side, as each user interaction might require server communication, leading

to less responsive and interactive user experiences. The fact that LHCb is a geo-

distributed scientific collaboration meant that a considerable percentage of the user

base accesses the systems from di↵erent countries and being a self-hosted system, it

becomes necessary to provide ways to reduce latency.

Finally, there was an increasing need within the LHCb Membership system to

develop workflows that more accurately mirrored real-life processes, moving beyond

simple CRUD operations. This shift was accompanied by a growing demand for

more sophisticated user interfaces. However, these evolving requirements began

4

to highlight the limitations of the existing architecture, as many of the new user

requests were not feasible within its current framework. This situation amplified

the need to explore alternative solutions that could o↵er the same fundamental

functionalities as FENCE, but with greater flexibility to accommodate these more

complex requirements.

1.4 Objectives

This project aims at rewriting the LHCb Membership System in a more mod-

ern software architecture and technology stack focusing on flexibility and community

support. The key objectives were

• Revalidate existing software requirements and collect new ones;

• Implement a search solution to replace FENCE’s Super Search;

• Define and consolidate a new software architecture;

• Implement a proof of concept to validate the proposed changes;

• Implement the LHCb Membership Version 2.

1.5 Methodology

This process started with the study of the existing RFC (request for comments)

documents created by the team with the goal to better understand the new ar-

chitectural proposal. After that, a literature review was carried out to map the

current industry standards for frontend development and to define some aspects of

the backend which were not covered by the RFCs nor implemented in Frapi: a new

module created by another Glance Developer to help application to set up REST

APIs (Representational State Transfer Application Programming Interfaces) to the

new applications’ backend. One of these aspects was data retrieval and persistence,

which could be powered by and ORM tool or raw SQL queries, among other aspects.

5

Next, a requirement gathering process started to determine the necessary compo-

nents for the chosen project to be the new architecture’s proof of concept in LHCb:

the Authorship System. This process included customer interviews with the LHCb

Editorial Board Chairperson, reviewing relevant documents like the LHCb Consti-

tution and internal records, and analyzing comments in the issue tracker applica-

tion. Additionally, a review of the existing authorship system’s production version

was conducted to understand the implemented algorithm. This approach aimed to

gather a clear and complete picture of the necessary features and functionalities for

the new system.

Once the new Authorship system was deployed in production, the Membership

Refactor started. At this moment, other system had already been migrated to the

new stack, so the new architecture was more consolidated. Another requirements

gathering round occurred, revealing the necessity of new tools. The first was a

search tool similar to what already existed in FENCE and the other a workflow

tracking tool, to monitor the state of internal processes. The Membership Version

2 development was carried out in parallel to the production version instead of an

incremental development. Beta users were constantly invited to test new features

and give feedback of how the V2 compared to the FENCE-based version, and these

comments / requests guided the development.

1.6 Description

This work is organized in three parts. Chapter two extends the context, explaining

how the international collaboration between CERN and UFRJ is structured, as well

as the challenges that arise from it. Then, FENCE’s most notorious drawbacks are

explored to enrich the justification for a new software architecture solution. This

chapter is focused on the software business rules presenting the search tool problem,

and then the Membership system requirements and goals for the refactor.

Chapter three discusses the implementation. Here the tools used to accomplish

the goals set in the chapter before are described as well as the strategy followed to

reach those goals. Finally, in the conclusion, the results from architectural changes

6

will be presented using metrics to compute the productivity gain from the changes

deployed. It will also present suggestions for future developments.

7

Chapter 2

Related work

2.1 CERN

The European Organization for Nuclear Research, known as CERN, is a pre-

mier particle physics laboratory located near Geneva, straddling the border between

Switzerland and France. It operates the world’s largest particle collider, the Large

Hadron Collider (LHC), which consists of a 27-kilometer ring of superconducting

magnets. The LHC is designed to collide protons at energies up to 14 teraelectron-

volts (TeV)[5]. There are four large experiments at CERN: ATLAS, CMS, ALICE,

and LHCb. The ATLAS experiment is designed to explore a broad range of physics

phenomena, including the fundamental nature of matter, the forces that shape our

universe, and the search for extra dimensions and particles that could make up dark

matter [6]. The CMS experiment, similar in its broad objectives to ATLAS, aims to

investigate the Standard Model of particle physics, including the detailed study of

the Higgs boson and searching for clues beyond the Standard Model [7]. ALICE is

specialized for studying the physics of strongly interacting matter at extreme energy

densities, where a form of matter called quark-gluon plasma forms, which is believed

to have existed shortly after the Big Bang [8]. Lastly, the LHCb experiment focuses

on understanding the di↵erences between matter and antimatter by studying a type

of particle known as the beauty quark, or b quark, and exploring what happened

after the Big Bang that allowed matter to dominate over antimatter [9].

8

2.2 Glance & Fence

As already mentioned Glance is a system designed for database retrieval and

manipulation, implemented using a set of components written in C++. Each com-

ponent within Glance is dedicated to a specific feature, functioning as a separate

program but sharing a common architectural framework. The system facilitates

interaction between the user and various databases, enabling data retrieval and up-

dates without requiring in-depth knowledge of SQL or database modeling. Glance’s

architecture allows it to communicate with web servers through the Common Gate-

way Interface (CGI), using the GNU CgiCC library to manage this interaction.

It connects to databases via connectors that interface with specific database tech-

nologies, thereby streamlining the data handling process [10]. For historical reasons,

Glance (team) became the uno�cial name of the international collaboration between

UFRJ, through LPS, and CERN. The team of developers is majorly composed by

UFRJ students who join a scientific initiation program on LPS, then eventually are

invited for a two-year internship program at CERN. The average time a member

spends in the Glance team is around four years.

As described by Bruno Lange on [11], FENCE is a PHP framework structured

using Object-Oriented Programming (OOP) principles. Its primary purpose is to

facilitate the development of web systems through JSON configuration files. The

framework is designed to allow classes of each system to extend abstract classes of

FENCE. This setup is intended to enable the reuse of generic methods while also al-

lowing the development of specific methods tailored to individual requirements. The

framework encourages the implementation of the Model-View-Controller (MVC)

pattern by providing various base classes that support data models, visualization

classes, and controllers for functionalities. A critical feature of FENCE is its use

of the DBOf class, which constructs the desired data models with their respective

validations based on the provided configuration file.

As already explored by Mário Simão on [12] FENCE presented some key draw-

backs that motivated the search for alternative solutions. Firstly, the design of

FENCE resulted in high maintenance costs, reducing the time available for new

9

application development. The installation process posed significant challenges, spe-

cially due to the necessity to fill many configuration files which were not documented.

The process to gather these files usually included accessing the QA or production

servers and navigating through the folders to find examples of such files. In this

context, access to remote servers could also be another issue. Because of FENCE’s

layers coupling, when developing an interface component, for example, the database

connector that would retrieve data to populate this interface should also be up and

running, this implies in a development setup always connected to CERN’s intranet-

work accessible only through SSH (Secure Shell) tunnels. Running a ping test from

Rio de Janeiro to CERN’s server in Geneva

1 $ ping lxplus.cern.ch

2 PING lxplus.cern.ch (188.185.24.20): 56 data bytes

3 64 bytes from 188.185.24.20: icmp_seq =0 ttl=42 time =179.759 ms

4 64 bytes from 188.185.24.20: icmp_seq =1 ttl=42 time =180.587 ms

5 64 bytes from 188.185.24.20: icmp_seq =2 ttl=42 time =179.565 ms

6 64 bytes from 188.185.24.20: icmp_seq =3 ttl=42 time =182.643 ms

The average response time is 180ms, which would very often lead to unstable con-

nections to the internal resources. This aspect is even more critical considering

the development setup of the team, which was based on virtual machines hosted at

CERN and accessed through Visual Studio Code using the Remote Development

extension which, according to users on [13], may present frequent disconnections

when the internet connection is not great.

In addition to being di�cult to learn for new developers, FENCE had other issues.

One of the main problems was that it lacked documentation and had hidden depen-

dencies. Another issue was that FENCE tried to solve common industry problems

such as logging, ORM (object-relational mapping), and database connections in its

own way. This approach made it harder to maintain FENCE in the long run com-

pared to open-source alternatives that had dedicated support and documentation.

The micro-ORM FacTree within FENCE, for example, did not have any in-memory

cache to optimize queries, resulting in many duplicated instances in memory and

crashes when fetching large amounts of data such as for the Authorship. It also was

not able to recursively instantiate classes with self-referencing foreign key in their

tables.

10

Finally, the lack of automated testing in both FENCE and its dependent systems

led to unaddressed architectural flaws, poor design choices, and the accumulation

of technical debt and issue backlog topping with 20 open issues on the issue tracker

incluing tickets more than 1 year old. The high coupling with external resources

further compounded the challenge of setting up a test environment.

2.3 Super Search

As discussed by Souza Silva [14] the FENCE Super Search framework comprises

a set of classes for crafting advanced search interfaces, segregated into two web

views. The initial view, termed the Search Workspace [11], empowers users to build

structured search criteria using logical operators. Users construct their queries by

connecting nodes horizontally with AND operators and vertically with OR opera-

tors. This setup, however, reveals a significant limitation. Figure 2.1 and Figure 2.2

illustrate an attempt to identify cables starting at point A and ending at

point C, along with those starting at point B and ending at point D.

The process involves dragging and dropping nodes to form a query, with results

subsequently presented in a tabular layout. To elucidate, consider the following

statements in the context of a desired search:

s1 : cable start = pointA, s2 : cable end = pointC, (2.1)

s3 : cable start = pointB, s4 : cable end = pointD (2.2)

Ideally, the query to fetch the correct dataset would be:

query1 = (s1 ^ s2) _ (s3 ^ s4) (2.3)

However, due to system limitations restricting connections to horizontal ANDs and

vertical ORs, this query becomes unachievable, highlighting a notable rigidity in

the FENCE system’s design.

In practice, users often resort to an alternate query format, as depicted in Fig-

ure 2.1:

query2 = (s1 _ s3) ^ (s2 _ s4) (2.4)

11

A closer analysis of query2 reveals its inadequacy, as it includes undesired results,

such as cases where both s1 and s4 are true. The di↵erences between both queries is

made explicit by the truth table. This led to the development of the new proposed

search implementation aimed at overcoming these and other limitations inherent to

the original system.

s1 s2 s3 s4 query1 query2

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

The same issue can arise in the Membership context when searching, for example,

for all members with primary a�liation is UFRJ and profession is Engineer plus all

members with primary a�liation is PUC (Pontif́ıcia Universidade Católica de São

Paulo) and profession is PhD Student:

s1 : affiliation = UFRJ, s2 : profession = Engineer, (2.5)

s3 : affiliation = PUC, s4 : profession = PhDStudent (2.6)

Moreover, the presentation view’s capabilities and styling are constrained by the

parameters set in the JSON configuration file. While generally adequate, this setup

12

struggles with dynamic content and complex behaviors. Additionally, the pag-

ination system exhibits flaws, notably when dealing with large result sets, where

operations like downloading, filtering, and sorting only consider the current page of

results (and not the entire result set which may contain multiple pages). To bypass

these limitations, users would often request the entire set of results to be displayed

in one page, which often leads to unresponsive interfaces and page crashes when the

browser run out of memory.

In the search results page, users could edit the layout by rearranging and hiding

columns, applying additional client-side filters (lookup), and changing the pagination

parameters (number of results per page). This layout could be saved, which is

especially useful for searches performed daily. However, the save search feature

relied on the browser’s local storage, meaning that this information is lost when the

cache expires. Finally, the lack of an API to expose search results to other systems

was a decisive factor for the approval of the development of a new search solution.

Despite these challenges, the FENCE Super Search became the most used data

visualization tool in various systems across LHCb, ATLAS, and ALICE, serving

thousands of users. This necessitates a careful transition to a new solution that

retains existing functionalities while addressing these shortcomings.

Figure 2.1: Query workspace. Figure 2.2: Fence search results.

13

To provide a replacement for the SuperSearch, the main inspiration was Jira’s

Query Language [15]. Jira is a software tool developed by Atlassian that allows bug

tracking, issue tracking, and agile project management. Jira Software supports dif-

ferent agile project management methodologies for software development, providing

tools to estimate, report, and measure velocity with workflows designed to fit your

frameworks. Since many years, it has been the o�cially supported issue tracker

software at CERN. [15]

As described by Dan Radigan [15], Jira Query Language (JQL) is a flexible tool

developed by Atlassian for searching issues in Jira. The key features of JQL (Jira

Query Language) include advanced search capabilities, allowing users to perform

complex searches using a structured query language; customizable queries, where

users can create queries based on specific fields, operators, and values; and a syntax

similar to SQL, making it intuitive for those with database query experience. The

components of JQL consist of fields, which are the data points in Jira such as

priority, status, and assignee; operators, which define the relationship between fields

and values, with examples including “=”, “!=”, “�”, and “”; and values, which

are the actual data or criteria being queried.

Souza e Silva [14] describes similar definitions for the structured query language

used on the new Super Search which was called Glance Search Library. On [14],

the Glance Query Language (GQL) is described as a pivotal aspect of the new

architecture, being used on the server-side to convert query strings into SQL filters,

forming a WHERE clause by mapping query string elements (Eg.: table names,

table columns, boolean operators) into SQL elements through a JSON configuration

file. This design di↵ers from FENCE’s Super Search by limiting the JSON file’s scope

to mapping query string elements to database columns and caching settings, thus

making the frontend interfaces independent of this file.

Using the same example from [14] to find all cables that start in point A and end

in point C plus all cables that start in point B and end in point D this would be

written in GQL as

14

queryString1 : (start point = PointA AND end point = PointC)

OR (start point = PointB AND end point = PointD)

And the GQL equivalent of the query that could be composed through FENCE’s

SuperSearch is

queryString2 : (start point = PointA OR start point = PointB)

AND (end point = PointC OR end point = PointD)

With the GQL elements categorized in the table 2.1.

Table 2.1: Search elements

Element Category Identifier

Start point Search Field f1

End point Search Field f2

= Search Operator o1

AND Search Conjunction AND

OR Search Conjunction OR

Point A, B, C, D Search Value v1, v2, v3, v4

(Grouping Mark (

) Grouping Mark)

A Search Statement in GQL is a combination of a Search Field, Operator,

and Value. For instance, from the queries, four statements are derived: s1 : f1 _

o1 _ v1, s2 : f2 _ o1 _ v3, s3 : f1 _ o1 _ v2, and s4 : f2 _ o1 _ v4 where

“X” _ “Y” _ “Z” denotates the concatenation of the SearchField “X”, a space

character, the SearchOperator “Y”, another space chacters plus the SearchValue

“Z”. Rewriting the query strings as a funcion of the statements queryString1:

(s1 ^ s2) _ (s3 ^ s4) and queryString2: (s1 _ s3) ^ (s2 _ s4). The design of

GQL, decoupled from interface and infrastructure constraints, ensures that both

queries are valid, resolving the limitations encountered in the FENCE system where

queryString1 could not be created.

15

With GQL, it is already possible for users to perform a search by typing the query

string in a text input. However, in order to assist users with the query formula-

tion and prevent syntax errors, an interface component to handle advanced boolean

searches had to be built. Because users were very familiar with FENCE’s Super-

Search as it was in use for many years, the new solution should resemble the query

composition mechanism to reduce the learning curve. This means going against most

UX research, which tends to favor simpler search interfaces, as discussed on [16].

In this article, titled “Search: Visible and Simple”, the author gives some general

guidelines on how to handle search in a web application. The author emphasizes

the importance of maintaining a straightforward and accessible search interface in

web applications. This approach is grounded in the observation that users generally

prefer and perform better with simpler search mechanisms. Complex or advanced

search interfaces, while potentially powerful, can often lead to user confusion and

frustration, especially for those not skilled in intricate query formulation. The arti-

cle suggests that a basic search box is usually su�cient for most users’ needs, and its

prominent placement, preferably on the homepage, enhances usability. Moreover,

the design should focus on optimizing first-time search success, as users’ likelihood of

finding desired results diminishes with each subsequent search attempt. The author

argues that, while advanced search capabilities may have their place, especially in

specialized applications, they should not overshadow the simplicity and accessibility

of the primary search function. This perspective challenges the idea of replicating

the complex mechanisms of FENCE’s SuperSearch, proposing instead that a more

user-friendly approach, with an emphasis on simplicity and visibility, could lead to

a more e↵ective and e�cient search experience for the majority of users.

At the same time, other publications, such as “How to Design Advanced Search

Interface – Step by Step” by Abhijit Rawool [17], acknowledge the necessity of an

advanced boolean search interface and give general guidelines for improved usability.

Rawool argues that while advanced search might not be essential for all applications,

it plays a crucial role in complex systems like enterprise-level applications. He sug-

gests a thoughtful approach to implementing advanced search, emphasizing that it

should only be used when simple search fields are insu�cient. Rawool recommends

starting with a quick search interface and then providing an option for advanced

16

search, echoing the sentiment that basic search meets most users’ needs. However,

when more detailed searches are required, advanced search interfaces become valu-

able. He advises careful consideration of the user interface (UI), suggesting that the

advanced search form should be hidden initially and only made visible when the user

opts for more detailed search criteria. In designing advanced search forms, Rawool

highlights the importance of user e↵ort in interpreting these interfaces. Each field

in the advanced search should be clearly labeled and intuitive to use, minimizing

the cognitive load on users. Furthermore, he advocates for including clear or reset

buttons, allowing users to easily start their search over, which is particularly helpful

given the larger number of fields in advanced search forms. Additionally, Rawool

addresses the potential clutter of numerous search fields. He proposes the “Add

Fields” feature, where users can customize their search by adding additional fields

as needed, keeping the interface clean and user-focused. This approach not only

declutters the interface but also empowers users to tailor their search experience

according to their specific needs.

These publications played a crucial role in the decision to build a modular search

interface based on web components. A web component is essentially a self-contained,

reusable module in a web application. It encapsulates HTML, CSS, and JavaScript,

allowing developers to create custom, encapsulated HTML tags for use in web pages

and apps. This design choice gives developers the flexibility to customize the inter-

face, allowing them to add necessary features and remove those that are not needed

for a particular use case. Another important decision was to combine the query

composition area with the search results display. This was based on the observation

that users often perform searches without applying any filters, just to see a full list

of entities (eg.: loading the information of all institutes). By merging these two

interfaces, the system can cache this list, giving a snappier feel to the user. The

final decision involved adding a quick lookup search (also known as simple search)

on the homepage and fixed in the navigation bar. This was influenced by the recom-

mendations from [16] and [17], which emphasize the importance of having an always

visible search feature. This is particularly useful for instances where a user wants

to search for a specific entity, such as a member searching for their institution. In

such cases, the simple search will accept a string as input and return the link for

17

the entity’s profile in the system.

In order to build a component based web interface it is necessary to map the

fundamental components and how they will interact with each other. An Event

Storming workshop was used to map such components as described by Michelly

Teixeira on [18] . This workshop was a collaborative e↵ort to clarify the business

logic behind the search functionality and model its components e↵ectively.

Event Storming helped the team map the search process using sticky notes on a

virtual board, leading to the identification of domain events, user actions that trig-

gered these events, and their organization into a timeline. The session began with

brainstorming to define relevant events for the user and system, which were then

associated with user or system actions that triggered them. The exercise provided

insights into the actions, entities, and actors involved in the search process. Sub-

sequent meetings analyzed these insights to define the search interface components,

detailing the properties each component should access and manage, resulting in two

main views: the Filters View and the Results View. A state management pattern

library was chosen to manage communication between components, centralizing the

state to handle the search interface more e↵ectively. The final result documented

each component’s role in generating commands and consuming events. Interface

mockups were created to visualize the web components, exploring the possibility

of merging search inputs and results into a single view for a more responsive user

experience.

2.4 The LHCb Membership

As already discussed in the introduction, the LHCb is a geo-distributed scientific

collaboration that specializes in investigating the slight di↵erences between mat-

ter and antimatter by studying a type of particle called the “beauty quark” [9].

The LHCb Membership is a system used to manage the collaboration participants,

automatizing bureaucratic processes and enforcing the rules defined in the LHCb

Constitution [19]. The main users of the LHCb Membership System are the LHCb

Management, the Editorial Board (EB), the Membership Committee, the Secre-

18

tariat and Institute and Country Representatives. As of February 2024 LHCb has

97 universities and research centers associated from 23 countries and 1656 members.

2.4.1 Collaboration organization

The LHCb Constitution [19] defines a series of roles in the collaboration. The

most relevant roles for the Membership context are described below.

The LHCb Management serves as the executive body responsible for the operation

of the detector, its upgrades, and physics analysis. It represents the LHCb Collab-

oration to external entities and comprises the Spokesperson, Deputy Spokesper-

sons, Technical Coordinator, and Resources Coordinator. Advised by the Technical

Board, Operations Planning Group, and Physics Planning Group, the LHCb Man-

agement makes daily decisions and communicates relevant issues to the Collabora-

tion Board (CB).

Major decisions by the Management are reported to the Plenary Meeting and then

to the CB for endorsement. In urgent situations, where decisions cannot wait for a

CB meeting, the Chairperson of the CB is consulted, and the decision is reviewed

at the subsequent CB meeting. The Management maintains open communication

with CERN Management and organizes resources, preparing the LHCb budget for

presentation to the CB and the Resources Review Board. Additionally, the Man-

agement nominates Project Leaders and the Operations Coordinator, subject to CB

approval, and may establish ad hoc Working Groups, recommending Conveners to

the CB.

The Spokesperson, as head of the LHCb Management, o�cially represents the

collaboration and is the primary contact between LHCb, CERN Management, and

the LHCC. Elected by the CB, the Spokesperson holds ultimate responsibility for

the experiment and has authority over the production and dissemination of physics

results, reporting directly to the CB.

Deputy Spokespersons, nominated by the Spokesperson and ratified by the CB,

represent the Spokesperson in their absence and may take on specific responsibilities,

19

with any significant delegations being reported to the CB. They are non-voting,

ex o�cio members of the CB, Operations Planning Group, Technical Board, and

Physics Planning Group, and their term ends with the Spokesperson’s term.

The Resources Coordinator, nominated by the Technical Coordinator with the

Spokesperson’s agreement and ratified by the CB, oversees financial planning. This

includes establishing annual budgets and expenditure reports for the CB and LHCb

Resources Review Board, monitoring payments, and managing the implementation

procedure for late M&O (maintenance and operation) fund contributions. The Re-

sources Coordinator reports to the Technical Coordinator and the CB and is an ex

o�cio member of both the Technical Board and the CB. These are heavy users of

the Membership, as the M&O fee paid by the universities and research centers is a

function of their number of members.

The LHCb Editorial Board (EB) oversees the collaboration’s publication stan-

dards, with members appointed by the Spokesperson and ratified by the Collabora-

tion Board. Terms are two years, with staggered renewals for continuity. The EB

manages the review process for publications, ensuring the collaboration’s input is

incorporated and the proper authors list is used. In case of disputes, decisions are

made by the EB Chairperson, Physics Coordinator, and Spokesperson. The EB also

maintains a database of o�cial LHCb results and materials.

The LHCb Authorship rules in [19] state that collaborators earn the right to sign

physics papers by contributing to the experiment, including detector construction,

real-time analysis, online projects, computing projects, data taking, calibration, or

data processing. Institutes must engage in service tasks as well. Authorship be-

gins six months after joining LHCb and extends for 12 months post-membership.

Annually, institutes submit a default author list, influenced by their M&O budget

share. PhD students are not bound by this quota. Retired active members can gain

Emeritus status, allowing them to sign papers without M&O and service obliga-

tions, subject to annual confirmation and support from LHCb coordinators or the

Spokesperson. Authors can opt out of signing a paper, and exceptions to these rules

are handled by the Editorial Board Chairperson, the Spokesperson, and the relevant

20

institute leader, with a possible appeal to the Spokesperson. The Editorial Board

reports to the CB on exception requests. The list is created and managed by the

Authorship system which is a part of the Membership.

LHCb membership comprises two types: Institute and Individual. Institute mem-

bership concerns CB treatment, while Individual membership involves status and

access rights. The Membership Committee, set up by the CB and Management,

reviews applications and participation in essential tasks. The Committee is formed

after each CB chair election and reports to the CB.

New institutes express interest to join LHCb through a letter, followed by a meet-

ing with the Spokesperson and CB Chairperson to draft a detailed application, in-

cluding contributions and service task plans. The Membership Committee reviews

the application, and the institute presents its contributions to the CB. Admission

requires two-thirds CB vote support. If positive, the institute is included in the

M&O sharing and recognized by the LHC Resource Review Board. Institutes may

also become Associated or Technical Associated Members.

Individual membership for members from existing LHCb institutes is managed by

their institute leader, who also notifies the LHCb secretariat of departures. Signifi-

cant growth in an institute’s size is communicated to the CB Chair and Spokesper-

son, detailing resource and contribution changes for evaluation by the Membership

Committee and CB.

Associated Membership is for institutes contributing to specific projects, hosted

by an LHCb institute, and responsible for long-term maintenance. They don’t have

a CB vote but are represented by their host and are eligible for LHCb author-

ship. Technical Associated Membership is for institutes contributing to detector

or computing projects, without access to data or LHCb authorship, but they may

participate in hardware and software development.

Individual membership categories vary by status and access rights, with di↵erent

levels of a�liation and authorship conditions. Full members have full access and

primary a�liation, while Technical and Software Associates have restricted access

21

tied to specific projects. A�liates, such as theorists, have short-term full access, with

potential authorship on individual papers. Access rights and full membership are

subject to approval and cannot be granted to individuals from Technical Associated

Member institutes. M&O contributions are expected from full member academics

and postdocs.

The LHCb Secretariat plays a key role in the collaboration management. Once a

member or institution is accepted in the collaboration, they operationalize their reg-

istration procedures. They also monitor the a�liation statuses and provide support

with CERN’s bureaucratic processes.

Therefore, the major roles for the Membership context are summarized in table

2.2.

Table 2.2: Major roles in LHCb for the Membership

Role Responsibilities and Characteristics

Spokesperson and Deputy Represents the collaboration, primary con-

tact between LHCb and CERN Management,

ultimate responsibility for the experiment.

Elected by the CB.

Technical Coordinator Part of the LHCb Management, advises on

technical aspects of the detector and its up-

grades.

Resources Coordinator Oversees financial planning, monitors pay-

ments, and manages the M&O fund contribu-

tions. Reports to the Technical Coordinator

and the CB.

Project Leaders Nominated by the Management, subject to CB

approval, lead specific projects within the col-

laboration.

22

Table 2.2 – continued from previous page

Role Responsibilities and Characteristics

Editorial Board (EB) Oversees publication standards, manages re-

view process for publications, and maintains

a database of o�cial LHCb results. Members

appointed by the Spokesperson and ratified by

the CB.

Membership Committee Reviews applications for Institute and Individ-

ual membership, reports to the CB. Formed

after each CB chair election.

Institute Members Involved in CB treatment, participate in M&O

sharing, can be Full, Associated, or Technical

Associated Members.

Individual Members Vary by status and access rights, managed by

institute leader, include Full members, Tech-

nical and Software Associates, and A�liates.

LHCb Secretariat Manages registration procedures, monitors

a�liation statuses, provides support with

CERN’s bureaucratic processes.

Administrators Glance developers and project managers

2.4.2 Business requirements

The LHCb Membership System is used to manage the a�liations of Members

and Institutes (universities and research centers) with LHCb. Institutes, upon

joining LHCb, open a Participation (which can be o�cial, associated, technical,

only for authorship and other types) with a period. The Membership integrates

with CERN’s Human Resource (HR) systems and provides information to other ap-

plications that need to consume the list of Members. Members are a�liated with

Institutes through one or multiple Employments. The Employment includes in-

formation such as the a�liation type (primary or secondary), the Profession, flags

to determine whether a member is entitled to authorship and counts for M&O and

23

the a�liation period. Members can also be assigned to special roles (Spokesper-

son, Team Leader, Safety O�cer and more) which are called Appointments. An

Appointment may have an associated Country (eg.: for Country Representative),

Institute (eg.: for Team Leader) or Physics Working Group. For the Author-

ship, there can be Exceptions which are Members added to a specific Paper’s list

of authors due to their exceptional contributions or members who requested to be

removed from the paper. It is also possible to add External Authors a�liated

with LHCb Institutes or External Institutes. Funding Institutions can also be

acknowledged on a paper basis due to financial Grants provided to Members or

Institutes.

The LHCb Membership Version 1 was essentially a CRUD system, providing

digital forms for users to fill in the registration details for the entities just listed

and search interfaces to retrieve these instances’ information. It also sent periodic

notifications using job schedulers. During the rewrite, all the CRUD functionality

had to be implemented in the new stack, but the team used the opportunity to

better understand how the processes in the collaboration worked in real life and

tailor the system to better fit the user needs. The table 2.3, lists the Membership

System requirements. The requirements marked with an asterisk (*) will be enriched

in the Workflow Project, aimed at transitioning real-life approval workflows into the

Membership system. This transition involves multiple roles collaboratively reviewing

and signing o↵ on a document, ultimately leading to a specific outcome or action

being recorded in the Membership database. Requirements marked with “**” could

only be implemented in the new stack, as FENCE’s rigid architecture made them

unfeasible.

Table 2.3: LHCb Membership System Requirements and

Role Access

Requirement Title & Description Roles Access

1 Display User Info: Users can view

other Member’s information.

Basic User, Administrator, Secre-

tariat

24

Table 2.3 – continued from previous page

No. Requirement Title & Description Roles Access

2* User Registration: Administrators

can insert new Members with specific

rules.

Administrator

3 Member Edition: Allows editing of

Member details.

Administrator

4 User History Tab: Users can view

their profile updates.

Basic User, Administrator, Secre-

tariat

5 Search User: Users can search for

other Members.

Basic User, Administrator, Secre-

tariat

6 Institute Insertion: Administrators

can add new Institutes with specific

rules.

Administrator, Secretariat

7 Institute Edition: Allows updating

Institutes’ basic info.

Administrator, Secretariat

8 Institute Details: Viewing of Insti-

tutes’ basic and Employment info.

Basic User, Administrator, Secre-

tariat, Team Leader

9 Institute History Tab: Users can see

updates to Institutes.

Basic User, Administrator, Secre-

tariat

10 Search Institute: Enables searching

for Institutes.

Basic User, Administrator, Secre-

tariat

11 Employment End Notification: Noti-

fies specific roles before Employment

ends.

Administrator, Secretariat

12* Add Employment: Administrators

and Secretariat can add Employment

for users with rules.

Administrator, Secretariat

13* Update Employment: Administra-

tors and Secretariat update Member’s

Employments.

Administrator, Secretariat

25

Table 2.3 – continued from previous page

No. Requirement Title & Description Roles Access

14 Employments Tab: Viewing of user’s

Employment records.

Basic User, Administrator, Secre-

tariat, Team Manager

15** Display Statistics for Institutes: Vi-

sualize Institute statistics.

Basic User, Administrator, Secre-

tariat

16** Display Statistics for Countries:

Country Representatives can view

Country statistics.

Administrator, Secretariat,

Country Representative

17 Public Page for Authors List: Access

to LHCb authorship list for a given

date for unlogged users.

Public

18 Upcoming Employment Notification:

Advance notification about upcoming

Employments.

Administrator, Secretariat

19 Institute Change Notification: No-

tifies Team Leaders about Institute

Participation changes.

Administrator, Secretariat, Team

Manager

20 Notification of Legacy Members:

Semi-annual check for possible dupli-

cates of old Members.

Administrator, Secretariat

21 Summary M&O Report: Access to

summary reports for specific roles.

Administrator, Secretariat, Re-

source Coordinator, Team Man-

ager

22 Detailed M&O Report: Detailed

M&O reports with access for specific

roles.

Administrator, Secretariat, Re-

source Coordinator, Team Man-

ager

23 Add Warning to Update Appoint-

ment End Date: Synchronization or

warning for appointment end dates.

Administrator, Secretariat

26

Di↵erently from the Membership System that already had a working version and

a set of requirements reasonably fulfilled, the Authorship system requirements were

not clear and the only document available was the LHCb constitution [19] that lacks

in details and do not cover corner cases. To gather the Authorship system require-

ments, the developers organized a series of customer interviews, which, based on

[20], are a qualitative research method aimed at understanding users’ needs, pref-

erences, experiences, and challenges with a software product. This process involves

planning the interview objectives, recruiting representative participants, conducting

interviews with open-ended questions, analyzing the responses to identify common

themes, and using the insights to guide development decisions. The practice ensures

a user-centric design, as it provides direct feedback from users or potential users,

helping to validate assumptions, identify pain points, and inform feature prioritiza-

tion.

This e↵ort resulted in an internal document describing the rules for a Member to

be considered an Author:

• The Member should have the “full member” membership access status;

• The current Employment Profession is neither Master Student nor Bachelor

Student;

• The Member has an active Employment entitled to authorship OR the last

Employment entitled to authorship ended in one year at most before the ref-

erence date;

– The second condition is taken into account for Members that fully ter-

minated their LHCb membership and also for Members that switched

from an a�liation entitled to authorship to an a�liation not entitled to

authorship. This way, the system ensures fairness by applying the 1 year

grace period to both active and inactive Members;

• The sum of the periods of Employments entitled to authorship is � 6 months

(180 days);

– Every Employment entitled to authorship started before the reference

date is counted (even the ones ended more than 1 year ago);

27

– Overlapping primary and secondary Employments are not counted twice;

– By default, an Employment is entitled to authorship when the profession

is one of the following: Emeritus, PhD Engineer, Post Doc, PhD Student,

or Senior.

Alongside the more precise authorship rules, the system requirements were gathered

and are listed in the table below. An Authorship list can be compiled for a given

date of for a given paper. Exceptions are only added to papers’ authors lists.

Table 2.4: Authorship System requirements

Title User Story & Notes

1 Display Paper Inter-

face

A user wants to visualize all papers and their informa-

tion in a table. This includes paper status, identifier,

title (supporting latex), number of authors, exceptions,

reference date, and admin functions (export, delete,

edit).

2 Search Paper A user wants to search already created paper by paper

title.

3 Download Paper A user wants to export the authorship list in various

formats: arXiv latex, InSpire xml, simple latex, PDF,

and lists grouped by institute.

4 Remove Paper An admin wants to remove a non-published paper.

5 Manage Paper An admin wants to manage an “on going” paper, with

capabilities to remove/add authors, change paper sta-

tus to published, and add institutes.

6 Exceptions Sum-

mary

An admin wants to visualize a summary of the authors

and institutes added or removed from the authorship

list.

7 External Authors An admin can add authors from outside the LHCb col-

laboration, requiring details like initials, author name

(in English), latex name, Inspire, ORCiD, and insti-

tute a�liations.

28

Table 2.4 continued from previous page

Title User Story & Notes

8 External Institutes If the author is from an external institute, it can be

added with details like institute name, city, country,

and main a�liation status.

9 Create Paper An admin can create a new paper, specifying details

like paper title (supporting latex), reference date, a

unique custom paper identifier, and an optional CDS

link. The default paper identifier format is detailed.

10 Preview Authorship

List

A user wants to preview the list ordered by last name,

with the ability to filter by institute and clearly see all

external members/institutes added or removed.

11 Authorship for a

given date

A user wants to preview the authorship list for a given

date

12 Download Author-

ship for date

A user wants to download the authorship list for a

given date

13 Register Funding

Agency

An admin or Secretariat wants register a Funding

Agency

14 Register/Manage

Grant

An admin or Secretariat wants to register/up-

date/delete a financial Grant provided by a Funding

Agency to a Member or Institute

15 Register/Manage

Grant

An admin or Secretariat wants to register/up-

date/delete a financial Grant provided by a Funding

Agency to a Member or Institute

16 Acknowledge Grant The EB Chair wants to acknowledge a Grant in a Pa-

per’s authors list

With the requirements gathering process concluded, the author started to develop

mock interfaces, which were again validated with the EB. This marks the start of

the migration to a new software architecture in the LHCb Glance systems.

29

The Authorship was very modified a second time at the beginning of 2023 due

to the Russia-Ukraine conflict which, in February 2022, escalated significantly when

Russia launched a full-scale invasion of Ukraine, marking a substantial increase in

hostilities and leading to widespread international condemnation, additional sanc-

tions against Russia, and a humanitarian crisis. The conflict has had far-reaching

implications, including economic disruptions, an energy crisis in Europe, and con-

cerns about broader regional or global security implications. In response to the

complex dynamics and personal convictions stemming from the conflict, the EB de-

cided to first allow authors to hide their a�liations on the authorship lists. This

decision was made to accommodate authors who wished to dissociate themselves

from their institutions, particularly those a�liated with Russian institutes, due to

disagreements with their institution’s stance or the broader political situation. Sub-

sequently, the EB also permitted authors to completely remove their names from

authors lists including Russian institutes if they chose to, reflecting a stance of

personal or ethical disagreement. This necessitated modifications to the author-

ship algorithm to support these requests, ensuring that authors could exercise their

choices regarding a�liation visibility and participation in a manner consistent with

their principles and the evolving situation. The final directive issued by the Edito-

rial Board (EB) implied in the exclusion of all Russian institutes from the author

lists, reinforcing LHCb’s stance of condemning the actions undertaken by Russia.

2.4.3 Workflow Project

While exploring the possible architectural patterns for the new refactor projects,

the developers came across the Ubiquitous Language and Domain Driven Design

(DDD) concepts. Eric Evans, in his book “Domain-Driven Design” [21], defines

a software development approach centered around modeling software to faithfully

reflect the core concepts and rules of a specific domain. This philosophy, deeply

rooted in understanding the domain itself, emphasizes building software that aligns

with business needs and adapts to complexity. The fundamental pillar of Evans’

DDD rests on ubiquitous language, a shared vocabulary established by developers

and domain experts. This common language ensures everyone operates on the same

page, reducing communication gaps and fostering collaboration. It’s through this

30

language that the domain model emerges, a conceptual representation of the core

entities, their relationships, and the domain’s inherent rules.

A significant challenge identified with Membership V1 was its constrained func-

tionality within collaboration procedures, particularly evident in the newcomer reg-

istration process. This limitation is illustrated in the flowchart referenced in Figure

2.3. The flowchart delineates tasks executed by newcomers in yellow and those un-

dertaken by the LHCb Secretariat in orange. A holistic analysis reveals the LHCb

Membership’s restricted application and its susceptibility to errors, primarily due to

the Secretariat’s potential need to manually input information from numerous PDF

forms into the system. Also, the redundancy of data entry is another critical issue;

information solicited through the LHCb registration form PDF, shown in Figure

2.4, often duplicates data already present in CERN’s HR system. This duplication

not only burdens users with repetitive data entry tasks but also heightens the risk

of data inconsistencies across di↵erent platforms.

Figure 2.3: LHCb newcomer registration procedure.

31

Figure 2.4: LHCb newcomer registration PDF form. All information highlighted

in red is already present in CERN’s HR database once this form is filled by the

newcomer.

In contrast to traditional CRUD systems like Membership V1, which primarily fo-

cus on the basic operations of data persistence and manipulation DDD emphasizes

the modeling of the domain’s intricacies and its fundamental principles, facilitat-

ing the creation of software that is highly congruent with business objectives and

capable of evolving alongside them. Specifically, in the context of the workflow de-

picted in Figure 2.3, DDD advocates for more atomic actions. An example would be

implementing a feature that allows the Secretariat to directly reject a registration

form with a single click, which would then automatically trigger an email notifica-

tion to the newcomer, prompting them to amend their submission. Additionally,

a scheduled task could regularly check CERN’s HR systems for new registrations,

automatically initiating the LHCb registration process by firing email notifications

with the necessary instructions through a static page on the Membership platform.

These enhancements, derived from discussions with key users of the Membership sys-

tem, aim to streamline and enrich the user experience. Further, additional workflows

have been identified and mapped to extend the system’s functionality, including the

modification of Employment profession, the extension of Employment periods, and

the creation of new Employment records.

32

These enhancements highlight the transformative capacity of Domain-Driven De-

sign (DDD) in redefining system architecture, ensuring it mirrors the details of

real-world business operations and addresses the needs of its users e↵ectively. Fur-

thermore, this approach has motivated the creation of software tools capable of

monitoring the lifecycle of entities through approval workflows. The conceptual di-

agram, referenced in Figure 2.5, provides a view of the proposed workflow tracking

mechanism. This model documents all conceivable States (represented by circles)

an entity might occupy, alongside Transitions (depicted by arrows) between these

States. A Transition is initiated once all requisite Conditions are met. The envi-

sioned Workflow Tracker would monitor Events, marking a Condition as fulfilled

upon the occurrence of a corresponding Event. This system is designed to inform

an Entity of its current State, potential subsequent States, and the Conditions nec-

essary for progression.

Figure 2.5: Workflow Tracking Service draft.

A more formal version of the draft displayed in Figure 2.5 becomes a necessity for

the LHCb Analysis Lifecycle Management System (ALCM) [22]. This system man-

ages the lifecycle of graphs, such as plots and diagrams, papers, conference notes,

and other documents published by the Collaboration. The documents undergo an

approval process, involving validation by various Collaboration members based on

their appointments. For instance, during parts of the process, the Physics Coordi-

nation must approve the document, a�rming the content’s accuracy. Subsequently,

33

the Editorial Board provides a sign-o↵, focusing on grammar and formatting. The

initial idea was for the ALCM to reuse the same classes created for the Member-

ship Workflow Tracker, but during the planning phase of the project, the developers

realized that a more robust solution based on the graph theory would be needed.

2.4.4 Discrete-Event Systems

A Discrete Event System (DES) can be conceptualized as a mechanism governed

by state changes triggered by discrete events. These systems are characterized by

a discrete state space and are event-driven. An event refers to any instantaneous

occurrence that can lead to a transition in the state of the system. Formally, the

set of possible events in a network can be denoted as:

⌃ = {p, q}

where p represents the arrival of a packet, and q signifies that the packet queue is full.

This scenario encapsulates the dynamism and responsiveness of DES in managing

network tra�c, where each event (such as the arrival of a new packet or reaching

the capacity of a packet queue) precipitates a change in the operational state of the

network.

For a given set ⌃, its Kleene closure, ⌃⇤, represents the totality of all possible

finite-length sequences that can be constructed from the elements of ⌃, including

the empty sequence denoted by ✏.

Example:

⌃ = {x, y, z}

⌃⇤ = {✏, x, y, z, xx, xy, xz, yx, yy, yz, zx, zy, zz, xxx, . . .}

This comprehensive collection ⌃⇤ encompasses every conceivable language L that

can be derived from ⌃, ensuring that L is either fully contained within or exactly

equals ⌃⇤. This includes the specific sets ⌃⇤, ⌃, and ;. Notably, the empty set ; is

distinct from {✏}, which contains a single element, namely the empty sequence ✏.

34

Consider a sequence s = def. The segments “d”, “e”, and “f” of s correspond

to its prefix, subsequence, and su�x, respectively. Therefore, the sequence can be

viewed in several relational contexts:

s = s✏, s = ✏s, s = ✏s✏

In these relations, ✏ serves as a universal prefix, su�x, and subsequence for any

string, including s.

Example:

s = xyz

Prefixes of s = {✏, x, xy, xyz}. Su�xes of s = {✏, z, yz, xyz}.

In formal language theory, standard set operations such as union, intersection,

di↵erence, and complement are applicable to languages since they are sets. For

subsets La and Lb within ⌃⇤, their concatenation is defined as:

L = LaLb = {s = sasb 2 ⌃⇤ : (sa 2 La) ^ (sb 2 Lb)}

When considering the prefix closure of a subset L of ⌃⇤, it is described by:

L̄ = {s 2 ⌃⇤ : (9t 2 ⌃⇤)[st 2 L]}

This prefix closure L̄ includes every prefix of every sequence in L. If L is non-empty,

✏ is automatically included in L̄. If L is empty, then L̄ likewise remains empty. A

set L is prefix-closed if L and L̄ are identical.

The Kleene closure of L further extends this concept:

L
⇤ := {✏} [L [LL [LLL [. . .

Example:

Consider the alphabet ⌃ = {x, y, z} and two distinct languages L1 = {✏, x, xyz}

and L2 = {z}. Assessing their prefix closures:

L̄1 = {✏, x, xy, xyz}

L̄1 6= L1,

hence L1 is not prefix-closed.

L̄2 = {✏, z}

L̄2 6= L2,

therefore L2 is not prefix-closed either.

35

An automaton is a conceptual model used to represent various types of languages.

A deterministic automaton is defined as a sixtuple:

G = (X,⌃, f,�, x0, Xm)

where:

• X is the set of states,

• ⌃ is the finite set of events,

• f : X⇥⌃ ! X is the state transition function, which may be partially defined

over its domain,

• � : X ! 2⌃ maps each state to the set of viable (active) events, �(x) being

the set of active events at state x,

• x0 2 X is the initial state,

• Xm ✓ X consists of marked states.

• L(G) is the language generated by the automaton G, consisting of all strings

that can be formed by following the transitions starting from the initial state.

A marked state is designated for special significance within the automaton, such

as signifying the start of a particular process or the completion of an activity.

The State Transition Diagram in the context of a deterministic automaton visually

represents transitions between states triggered by events as shown in Figure 2.6.

Figure 2.6: State Transition Diagram example.

36

States:

X = {A,B,C}

Events:

⌃ = {x, y, z}

State Function: For a given state and event, the following function describes the

resultant state: f(A, x) = A, f(A, z) = C, f(A, y) = B, f(B, y) = C, f(B, x)

is undefined, f(B, z) is undefined, f(C, x) is undefined, f(C, y) is undefined, and

f(C, z) is undefined.

Active Event Function: This function specifies which events are possible in a par-

ticular state:

�(A) = {x, y, z}, �(B) = {y}, �(C) = {}

Initial State:

x0 = A

Marked States:

Xm = {C}

Figure 2.7 exemplifies the behaviors of locks within state machines, particularly

focusing on deadlock and livelock situations. The automaton G for this figure can

be defined as: G = (X,⌃, f,�, x0, Xm) where:

• X = {A,B,C,D,E, F} is the set of states.

• ⌃ = {x, y, v, w, z} is the finite set of events.

• f : X ⇥ ⌃ ! X is the state transition function, defined by:

f(A, x) = A, f(A, y) = B, f(A, v) = F, f(A,w) = D, f(A, z) = C,

f(B, y) = C, f(D, v) = E, f(D, z) = E

• � : X ! 2⌃ maps each state to the set of viable (active) events, defined as:

�(A) = {x, y, v, w, z}, �(B) = {y}, �(C) = {}, �(D) = {v, z},

�(E) = {}, �(F) = {}

37

• x0 = A is the initial state.

• Xm = {C} is the set of marked states.

Figure 2.7: State Transition Diagram example with locks.

State F represents a deadlock condition, characterized by the absence of any

possible events that could trigger a transition from this state. Once reached, the

system remains indefinitely in this state, unable to progress to a marked state.

States D and E together demonstrate a livelock scenario. While there are events

that transition the system between these two states, no event leads to a marked

state.

A system experiences a blocking when the following condition is met:

Lm(G) ⇢ L(G)

Conversely, there is no blocking within the system when:

Lm(G) = L(G)

The generated language L(G) includes: x
n (staying in A via x), xn

y and x
n
yy

(from A to B and then to C), xn
z (from A to C), xn

v (from A to F), xn
wv (from

38

A to D to E), xn
wvz (from A to D to E and back to D). It can also loop between

D and E. Hence:

L(G) = {xn
, x

n
y, x

n
yy, x

n
z, x

n
v, x

n
w, x

n
wv, x

n
wvz, x

n
wvzv, x

n
wvzvz... | n � 0}

The marked language Lm(G) consists of strings that end in the marked state C:

Lm(G) = {xn
yy, x

n
z | n � 0}

The prefix-closure Lm(G) includes all prefixes of strings in Lm(G): Prefixes of xn
yy:

{✏, x, x2
, . . . , x

n
, x

n
y, x

n
yy} Prefixes of xn

z: {✏, x, x2
, . . . , x

n
, x

n
z} Thus:

Lm(G) = {xm
, x

m
y, x

m
yy, x

m
z | m � 0}

Checking for locks using the conditions provided: Lock Condition: Lm(G) ⇢ L(G)

Lm(G) = {xm
, x

m
y, x

m
yy, x

m
z | m � 0}

L(G) = {xn
, x

n
y, x

n
yy, x

n
z, x

n
v, x

n
w, x

n
wv, x

n
wvz, x

n
wvzv, x

n
wvzvz... | n � 0}

Since Lm(G) does not include strings with v, wv, or wvz, and these strings are part

of L(G), it is evident that:

Lm(G) ⇢ L(G)

Given that Lm(G) does not include all strings from L(G), the condition Lm(G) =

L(G) is not met.

39

Chapter 3

Implementation

3.1 Data exchange across CERN systems

The Glance systems are pivotal in managing CERN’s detectors’ projects, aiding

in the creation of scientific papers, authorship attribution, and detailing the oper-

ational aspects and infrastructure of the detectors. Other CERN systems address

di↵erent collaboration facets, often overlapping with Glance system data, most of-

ten Members and Employments information. This led to other groups seeking data

integration with the Glance Team, initially resolved by granting read-only database

access. However, this solution was fraught with challenges, especially when database

modifications impacted other dependent systems. The situation became even more

complex with the introduction of General Data Protection Regulation (GDPR) by

the EU. According to the European Commission website [23], this regulation safe-

guards the personal information of individuals within the European Union (EU)

and the European Economic Area (EEA). It empowers individuals to control their

data, requiring organizations to be transparent about its collection, use, and sharing.

Additionally, organizations must implement security measures to protect the data.

This regulation not only empowers individuals but also protects them from privacy

violations and creates a level playing field for businesses operating within the EU

and EEA, which includes CERN as the research center is co-hosted by France and

Switzerland. GDPR is implemented through the CERN’s Operational Circular no.

11 (OC11) [24]: a document designed to ensure the protection and secure handling

of personal data within the organization, in line with legal requirements and best

40

practices. It details the principles and obligations of data processing at CERN, em-

phasizing the need for data security, transparency, and respect for individual rights.

The document outlines the roles and responsibilities of various stakeholders, includ-

ing data controllers and processors, and specifies the procedures for managing data

access, consent, rectification, deletion, and portability. It also includes guidelines for

data transfer outside the organization, addressing both internal and external com-

pliance. Additionally, it establishes mechanisms for reporting data breaches and

handling complaints, ensuring a structured response to potential data protection

issues.

A key aspect of OC11 is the obligation imposed on Data Controlling Services

(such as the Membership) to establish one or more Records of Processing Opera-

tions relating to the Personal Data it processes. According to [24], the Record of

Processing Operations shall contain at least all of the following information:

1. The type(s) of Personal Data being processed;

2. The purpose of its collection;

3. The period for which it is retained;

4. Where applicable, details regarding use of automated decision-making; and

5. Where applicable, details regarding transfers of Personal Data. This

may include defining all CERN Services / user groups that would

consume the data provided by the Controlling Service.

The last provision posed a significant challenge for the conventional practice

of data sharing through database views, as it was di�cult to ascertain or regulate

the specific accounts granted access to these views. Therefore, to facilitate data ex-

change and mitigate issues of data redundancy and inconsistency and comply with

OC11, Glance followed the approach chosen by other software groups to develop

a REST API for the systems, allowing proper integration with other services and

tools. This approach is also aligned with CERN’s authentication/authorization (au-

thz) provider, which had just started to provide OAuth 2.0 authorization endpoints.

41

The adoption of Backend APIs also opened possibilities for developing web applica-

tions with distinct backend and frontend components and increased data restriction

granularity.

REST APIs serve as a set of protocols and standards used for designing networked

applications. They enable systems to communicate over the internet by utilizing

HTTP requests to create, read, update, and delete data, thereby facilitating inter-

action between client and server. A REST API abstracts the complexity of internal

systems, presenting a simple, uniform interface to external entities. It operates on a

stateless, client-server, cacheable communications protocol, where each request from

a client contains all the information the server needs to fulfill the request. REST

APIs use standard HTTP methods, such as GET, POST, PUT, and DELETE, to

interact with resources, which are identified via URLs. These APIs are designed

around the concept of resources, with each resource being accessed through its URI

and manipulated using the HTTP methods.

Tools like the Slim Framework are used to simplify the development of web appli-

cations and APIs, particularly RESTful APIs. Slim is a PHP micro-framework that

provides developers with a set of tools to build web applications and APIs quickly

and e�ciently. It is designed to be lean and agile, enabling developers to add only

the components and functionalities they need, thereby avoiding unnecessary over-

head. Slim’s architecture is built around the request-response model, being used for

developing REST APIs that require e�cient routing, middleware support, and easy

handling of HTTP requests and responses.

Middlewares, are components that intercept incoming requests or outgoing re-

sponses. They act as a layer between the request and the response or between

di↵erent components of an application. Middlewares can be used for a wide range

of purposes, such as authentication, logging, CORS (Cross-Origin Resource Shar-

ing) handling, caching, and more. They allow developers to encapsulate common

features in a reusable way, applying them across various routes or endpoints in the

application. This makes it easier to manage cross-cutting concerns like security and

performance optimizations without cluttering the core business logic of the applica-

42

tion. Middlewares can be stacked or chained, meaning a request can pass through

multiple middlewares in sequence before reaching the final route handler, allowing

for modular and flexible application design.

The FENCE REST API (FRAPI) was introduced to easy REST API creation.

Inspired by the Slim Framework, it implements the core functionality to handle

request routing to backend controller classes’ methods according to predefined con-

figurations. It also implements the all the middlewares required for a web application

in the CERN context, which are:

• Authentication Middleware: Verifies the identity of users or systems, en-

suring that only authorized entities can access the application.

• Authorization Middleware: Determines the access rights of authenticated

users, restricting actions and resource access based on predefined permissions.

This is particularly important for OC 11 compliance.

• Request Validation Middleware: Ensures the integrity and validity of

incoming requests by checking their structure, parameters, and data formats.

• Cross-Origin Resource Sharing (CORS) Middleware: Manages cross-

domain requests, enabling or restricting resource sharing across di↵erent ori-

gins in a secure manner.

• Error Handler Middleware: Provides a centralized solution for handling

errors and exceptions, improving the application’s reliability and user feedback.

3.2 Hexagonal architecture

The integration of FRAPI for constructing REST APIs constituted merely a seg-

ment of the overarching system design. It established the methodologies for the

backend to expose its functionalities and data without enforcing specific design

patterns. This flexibility enabled developers to explore various architectural frame-

works, ultimately converging on two predominant models: Layered Architecture and

Hexagonal Architecture. This approach facilitated a comprehensive evaluation and

43

selection of architectural patterns that best suited the project’s requirements, al-

lowing for a tailored and e↵ective system architecture. Initial experimentation with

Layered Architecture indicated its appropriateness for straightforward and smaller-

scale applications. This model organizes classes based on their technical roles rather

than their business functions, also promoting a database-centric design philosophy.

It encourages the creation of classes that mirror the structure of a database, rather

than designing to achieve specific behavioral outcomes that facilitate real-world pro-

cesses. These considerations, particularly the emphasis on database-driven design

and the lack of focus on business-centric modeling, steered the development team

towards the other option.

Hexagonal Architecture, introduced by Alistair Cockburn in 2005 [25], is a soft-

ware architecture designed to achieve certain goals, emphasizing the isolation of

business logic from external interfaces and infrastructure. This architecture aims to

make the application equally controllable by users, other applications, or automated

tests without the business logic being aware of the invocation source. It also seeks to

enable the development and testing of business logic in isolation from databases and

other infrastructures, facilitating infrastructure modernization without adjusting the

business logic.

The architecture is characterized by its use of “ports” and “adapters” to separate

the business logic (the application core) from external components. The business

logic defines interfaces (ports) for communication with the outside world and imple-

ments use cases exclusively against these port specifications, remaining agnostic to

the technical details behind these ports. Ports serve as gateways for the application

to interact with the external world, including user interfaces, APIs, databases, and

other external systems. Adapters act as intermediaries, translating between the ex-

ternal world and the application’s ports. They can be designed for various external

components, allowing for flexibility in how the application interacts with di↵erent

technologies and infrastructures. The architecture distinguishes between “primary”

(or “driving”) and “secondary” (or “driven”) ports and adapters, based on whether

they control the application or are controlled by it. This distinction helps organize

the flow of control and data within the system.

44

The Dependency Rule ensures that dependencies flow inward towards the applica-

tion core, preventing the business logic from being coupled to external technologies

and frameworks. This supports the isolation of business logic. Dependency Inver-

sion is a key principle in implementing secondary ports and adapters, allowing the

direction of code dependencies to be opposite to the calling direction. This enables

the application core to remain isolated while still interacting with external systems.

In Hexagonal Architecture, the domain refers to the core business logic and data

that define what the application is about. It encapsulates the business rules, entities,

and logic that are central to the application’s purpose. The domain is at the heart

of the architecture, as shown in red on Figure 3.1, isolated from external concerns

like UI, database access, or external service integration. This isolation ensures that

changes in the external layers (like swapping out a database or changing the UI

framework) do not a↵ect the core business logic, thereby making the system more

maintainable and adaptable to change. Use cases are part of the application layer

that sits at the boundary of the domain (in yellow on Figure 3.1), directly inside the

ports. They define the application’s available interactions in terms of the domain

model, abstracting away the details of how data comes into and goes out of the

system. They are the primary means by which external requests (via adapters,

as illustrated in the grey section of Figure 3.1) are translated into actions on the

domain model. This could involve creating, updating, retrieving, or deleting domain

entities according to the business rules. Use cases are designed to be agnostic of the

external world (Figure 3.1 blue components). Whether triggered by a REST API

call, a GUI action, or a scheduled job, a use case focuses solely on executing business

logic. Implementing use cases in this manner allows the domain to remain purely

focused on business rules, without being tainted by concerns about how it’s accessed

or how its data is persisted.

45

Figure 3.1: Hexagonal Architecture visualization from [1] adapted.

3.3 Frontend architecture

Di↵erent from FENCE where pages were static and server-side rendered, the team

decided to create single page applications (SPAs) that would consume the API

endpoints exposed by the backend using FRAPI. A one-page application is a type

of web application that interacts with the user by dynamically rewriting the current

page rather than loading entire new pages from the server. This approach avoids

interruption of the user experience between successive pages, making the application

behave more like a desktop application within a web browser [26].

In a single-page application, all necessary HTML, JavaScript, and CSS code is

either retrieved with a single page load or the appropriate resources are dynamically

loaded and added to the page as necessary, usually in response to user actions. The

page does not reload at any point in the process, nor does control transfer to another

page, although modern web technologies (like HTML5 History API) allow the pages’

URL to change without a full page refresh. Single-page applications (SPAs) deliver

a fluid user experience by enabling the dynamic updating of webpages. This is

46

achieved through sending requests to the server to fetch data, usually in formats like

JSON or XML, and then rendering this data on the client side, which significantly

reduces the amount of data transferred between the server and the client, thereby

enhancing performance. This client-side rendering approach not only allows for a

reduction in the server’s workload—since the server is only tasked with sending data

in response to requests rather than generating full HTML pages—but also leads to

faster server response times and scalability advantages. Reducing the server load is

a key advantage for CERN systems due to the geo-distributed user base. SPAs are

designed to maintain a continuous user experience by preserving the application’s

state within the browser, enabling users to experience personalized content and

navigate through the application without losing their current state, such as form

inputs or scroll position. This stateful interaction, combined with the avoidance

of full-page reloads, provides users with a fluid and app-like experience, which is

especially advantageous for complex applications that feature rich interactions and

workflows.

Vue.js describes itself in the documentation [27] as a progressive JavaScript frame-

work used for building user interfaces chosen for the frontend architecture. It lever-

ages standard web technologies like HTML, CSS, and JavaScript, o↵ering a declar-

ative and component-based programming model that facilitates the development

of user interfaces, ranging from simple to complex scenarios. Vue.js is designed to

enhance standard HTML with a template syntax that allows developers to declar-

atively specify HTML output based on JavaScript state, coupled with a reactivity

system that automatically updates the DOM in response to state changes.

The framework’s progressive nature means it can be adopted incrementally, fitting

various use cases from enhancing static HTML to powering complex Single-Page Ap-

plications (SPAs). SPAs benefit significantly from Vue.js due to its e�cient update

mechanisms and component-based architecture, enabling dynamic content loading

and interaction without page reloads. Vue 2 uses the options API for defining com-

ponent logic. This API uses a descriptive object to define state, methods, and

lifecycle hooks. In Glance applications, which require a build step, components are

authored using Single-File Components (SFCs). A Single-File Component in Vue.js

47

encapsulates a component’s template, logic, and styles within a single file, promot-

ing a cohesive and modular approach to building web applications. Vue.js, coupled

with its ecosystem tools such as Vue Router for client-side routing and Vuex for state

management, o↵ers a straightforward and well-documented development experience.

These characteristics, along with Vue’s simplicity, lightweight nature, and growing

adoption—especially in comparison to heavier frameworks like React—were pivotal

in the decision to utilize Vue.js for the frontend development of the new application

as described by Michelly on [18].

The todo list application component, highlighted in the Vue.js script 3.2 and tem-

plate code 3.1, demonstrates basic use of Vue.js’s Options API, integrating various

features that illustrate the component’s anatomy. This example is based on a live

demo application provided in the Vue o�cial documentation [28].

Starting with the template structure (Vue.js template code with slot on listing

3.1), it defines the HTML markup, binding it to the Vue instance’s data or methods

(lines 5 to 8 of listing 3.1). The greeting message is dynamically rendered based on

the computed property greetingMessage, showcasing Vue.js’s reactive data binding

capabilities. The template further introduces a slot around the BaseInputText

component (Lines 4-10 of listing 3.1), enabling custom input content. This use

of slots underscores Vue’s flexibility and reusability, allowing developers to inject

customized content or components into predefined placeholders.

In the script section of 3.2, the code begins importing the BaseInputText and

TodoListItem components (lines 2 and 3 of listing 3.2), which are required for

inputting new todos and listing them respectively. This exemplifies the component-

based architecture of Vue.js, where smaller, reusable components are composed to

build more complex components and views. The script delineates props such as

inputPlaceholder and emptyListMessage, which are custom attributes designed

for facilitating data transfer from parent to child components. In the component il-

lustrated in listing 3.2, the inputPlaceholder prop is bound to the BaseInputText

component’s placeholder prop. Consequently, modifying the value of inputPlaceholder

automatically propagates the changes to the placeholder.

48

The data function (line 14 of listing 3.2) declares the local state of the com-

ponent, including newTodoText and todos, illustrating the reactive state manage-

ment in Vue.js. Through methods (lines 20 to 28 of listing 3.2) like addTodo and

removeTodo, the state is manipulated, reflecting changes in the UI without direct

DOM manipulation, showcasing Vue’s declarative rendering capabilities.

Computed properties (line 29 of listing 3.2), such as greetingMessage, dynam-

ically calculate values based on reactive data, o↵ering a cached, e�cient way to

update the UI based on state changes. Watchers (script 3.2 line 34) on properties

like todos provide a mechanism to perform actions in response to state changes.

Lifecycle hooks (script 3.2 lines 39 to 44), including created and mounted, o↵er

insights into the component’s lifecycle stages, allowing for initialization tasks and

DOM manipulations post-rendering. This demonstrates the control Vue provides

over a component’s lifecycle, allowing developers to hook into key events.

Vue also provides tools to define scoped styles, which are applied only to the

component defined in the same file as the style. This is shown in the code 3.3.

Finally, an integration with Vue Router would enable this component to be

part of a SPA, mapping URLs to views/components and rendering them within

a <router-view> element, facilitating SPA development with Vue.js. Vue Router’s

handling of browser history and URL synchronization enhances the SPA navigabil-

ity and allows users to use the browser’s back button. Image 3.2 illustrates what

the component created looks like.

1 <template >

2 <div>

3 <h1>{{ greetingMessage }}</h1>

4 <slot name="input">

5 <BaseInputText

6 v-model="newTodoText"

7 :placeholder="inputPlaceholder"

8 @keydown.enter="addTodo"

9 />

10 </slot>

11 <ul v-if="todos.length">

12 <TodoListItem

13 v-for="todo in todos"

14 :key="todo.id"

15 :todo="todo"

16 @remove="removeTodo"

49

17 />

18

19 <p v-else>

20 {{ emptyListMessage }}

21 </p>

22 </div>

23 </template >

Listing 3.1: Vue.js template code with slot.

1 <script >

2 import BaseInputText from ’./ BaseInputText.vue’

3 import TodoListItem from ’./ TodoListItem.vue’

4

5 export default {

6 components: {

7 BaseInputText ,

8 TodoListItem

9 },

10 props: {

11 inputPlaceholder: String ,

12 emptyListMessage: String

13 },

14 data() {

15 return {

16 newTodoText: ’’,

17 todos: []

18 }

19 },

20 methods: {

21 addTodo () {

22 this.todos.push({ id: this.nextTodoId ++, text: this.newTodoText });

23 this.newTodoText = ’’;

24 },

25 removeTodo(idToRemove) {

26 this.todos = this.todos.filter(todo => todo.id !== idToRemove);

27 }

28 },

29 computed: {

30 greetingMessage () {

31 return ‘You have ${this.todos.length} todos ‘;

32 }

33 },

34 watch: {

35 todos(newTodos) {

36 console.log(’The todo list has changed!’, newTodos);

37 }

38 },

39 created () {

40 console.log(’Component has been created ’);

41 },

42 mounted () {

43 console.log(’Component has been mounted to the DOM’);

44 }

45 }

46 </script >

Listing 3.2: Vue.js script code.

1 <style scoped >

2 button {

3 font -weight: bold;

50

4 }

5 </style>

Listing 3.3: Vue.js style code.

Figure 3.2: Todo Vue app example.

In the project’s early stages, the developers embarked on creating a suite of com-

ponents that would serve as the foundational building blocks for new systems. This

suite encompassed a variety of elements, such as text inputs, tables, and navigation

bars, among others. Complementing these components, the team crafted a dedi-

cated plugin to handle user authentication, all of which were consolidated into a

JavaScript library named fence-vue. Despite this e↵ort, the developers recognized

the existence of numerous established libraries o↵ering similar functionalities, moved

by vast and active communities. A notable example is Vuetify—a material design

UI framework built atop Vue.js. Vuetify stands out by providing an extensive array

of pre-designed, customizable components and directives that expedite the process

of creating aesthetically pleasing and responsive web applications. One of the sig-

nificant benefits of Vuetify is its integration with Figma, a web-based collaborative

tool for UI/UX and graphic design that facilitates real-time teamwork. With its

Figma components, Vuetify enables developers to swiftly prototype and iterate on

interface designs, ensuring a smooth design-to-development workflow and fostering

a more agile and collaborative environment. Figure 3.3 shows some of Vuetify’s

components on a Figma project. The developers then limited the scope of fence-vue

51

to common plugins and more complex components built on top of Vuetify’s base

ones.

Figure 3.3: Some of Vuetify’s components shown in Figma.

3.4 Authorship Implementation

The Authorship implementation started at the beginning of 2020, following a

consensus among stakeholders and developers that the gathered requirements were

su�ciently mature. However, the development began during a period when the team

was adhering to the Layered Architecture model. This timing resulted in certain

inconsistencies within the system’s design. Notably, newer features implemented

after the initial deployment to production had already transitioned to following the

Hexagonal Architecture, leading to a mix of architectural approaches.

Upon starting a new project, it’s necessary to register the new application on the

CERN applications portal. This involves registering two separate applications: one

for the frontend and another for the API, which is important for creating the needed

credentials to safely communicate between the two. After registering the application,

the next step is to add a new CERN SSO Registration. When doing this, developers

need to keep in mind that: for client applications, they must choose the option “my

application cannot store a client secret safely” to make it a public client, which

52

means only a Client ID will be needed. For APIs, especially if the application needs

to talk to secure CERN APIs like the Authz Service API, they might need to select

the option that allows generating tokens, useful for tasks such as adding or removing

members from a GRoups for APPlications Authorization (GRAPPA) Group. This

registration process provides the required credentials (Client ID and Client Secret)

for applications to authenticate users through the OAuth 2 protocol.

E-Groups serve as the foundational system at CERN for granting user access to

applications through membership in various groups, integrated within the Single

Sign-On (SSO) tokens. Utilized extensively within the organization, E-Groups facil-

itate authorization in a recursive manner, allowing a single e-group to be associated

with multiple other e-groups. The GRAPPA system is introduced as a modern re-

placement for E-Groups, aiming to address and improve upon the limitations of the

previous authorization infrastructure. In the Authorship context, for example, there

is a GRAPPA Group for the LHCb Glance Developers. This group is then used to

grant the admin role to the developers in the application’s settings. Roles can be

defined on a user basis or based on Grappa groups. Another example of group is

the LHCb Secretariat which grants the secretariat role in the Membership and

Authorship systems.

The general application folder structure has three main directories:
api
client
database

The api directory houses the entire backend codebase, predominantly com-

prised of PHP classes. This structure facilitates the separation of concerns by en-

suring that all server-side logic and data manipulation tasks are centrally managed.

Conversely, the client directory is dedicated to the frontend development aspects,

encompassing Components, views, and styles to create user interfaces. Additionally,

the database directory contains SQL migration files, which play an important role

in managing database schema changes and ensuring data consistency across di↵erent

stages of the application’s lifecycle.

53

3.4.1 The Authorship Backend

FRAPI-based applications tend to have a similar backend structure. Expanding

the api folder content, the following subfolders can be found:
api

configuration
routes
docs
resources

notifications
templates
queries

delete
insert
select
update

schemas
src

AuthorsList
Application

DeleteAcknowledgement
DeleteFundingAgency
GetAcknowledgementTex
GetAuthorsList
GetFundingAgencyDetails
GetGrantDetails
GetInternationalOrganizationDetails
RegisterAcknowledgement
RegisterAuthorsListForPaper
RegisterFundingAgency
RegisterGrant
Subscribers
UpdateGrant

Domain
Event

Infrastructure
Cronjob
Persistence
Web

Controllers
Cronjob
DTO
Models
Persistence
Notifications
Repositories
Services
tests

54

Comparison
Integration

Inside the configuration folder, it is required to add an api.json configuration

file. This file includes authentication settings, such as defining which SSO provider

will be used by FRAPI and the API public endpoints’ paths.

SSO is an authentication process that allows a user to access multiple applica-

tions or systems with one set of credentials, thus eliminating the need to log in

separately to each system. SSO can be implemented using various authentication

protocols, including SAML (Security Assertion Markup Language), OAuth, and

OpenID Connect. At CERN, OAuth 2 was the protocol used provided by Keycloak:

an open-source Identity and Access Management solution developed by Red Hat.

In the api.json it is also included the path for the User class, which defines a set

of properties required for every authenticated user to record the actions performed by

them and perform authorization checks. For the Authorship and the Membership the

User class has the following properties: $id, $appointments, $primaryEmployment,

and $cernId.

In this file it is also provided the Sentry instance URL in case the application

has one. Sentry is an open-source error-tracking software that provides monitoring

and fixing of crashes in real time. It enables the detection, understanding, and

resolution of issues a↵ecting the user experience through detailed error insights.

Sentry facilitates the identification of the specific line of code causing an issue, the

conditions under which the error occurred, and its impact on users. This capability

assists developers in addressing problems promptly, potentially before users notice

them.

Within the configuration\routes directory, each API endpoint is mapped to

its corresponding controller method handler. This directory contains a JSON file

for each resource, which is read by FRAPI. It subsequently manages the routing of

requests to the appropriate controller methods based on this configuration. As shown

in the JSON 3.4 line 13, it is possible to provide an array of roles required to access a

55

given resource. If the user tries to access a resource without the correct permission,

FRAPI will return a response with HTTP status code 401: unauthorized.

FRAPI also implements a middleware for JSON schema validation which ensures

JSON documents (in the REST API context, the request body) adhere to a pre-

defined structure, defined by a JSON Schema. This includes constraints on data

types, properties, and formats. The schema, written in JSON, specifies properties,

required fields, value constraints, and array items, among other rules. Validation

occurs at runtime, safeguarding against errors and vulnerabilities by verifying data

conformity. When the payload received does not pass the schema validation, FRAPI

will automatically respond with a 400 Bad Request error indicating a problem with

the client’s request to the server specifying which fields did not pass the schema

validation.

The authorization field (code 3.4 line 8) is used to provide the list of required

groups a user must belong to in order to access the given endpoint.

1 {

2 "type": "controller",

3 "class": "\\LHCb\\ Membership \\ Controllers \\ AuthorsListController",

4 "paths": {

5 "/authors -lists": {

6 "GET": {

7 "method": "getAllAuthorslistBasicInformation",

8 "authorization": ["basic -user"]

9 },

10 "PATCH": {

11 "method": "update",

12 "authorization": ["editorial -board -member"],

13 "schema": "resources/schemas/authorslist -update.json"

14 }

15 },

16 "/authors -lists/institutes": {

17 "GET": {

18 "method": "getAllInstitutes",

19 "authorization": ["basic -user"]

20 }

21 }

22 ...

Listing 3.4: authors list resource routes.

Inside the api/docs folder it is stored the Swagger Documentation to facilitate

external systems to connect to the APIs. Swagger, as described on [29], is a toolset

56

that supports the OpenAPI Specification (OAS) for developing APIs. It enables

the description of the structure of APIs, making it possible for both humans and

computers to understand the capabilities of a service without accessing its source

code. Swagger facilitates the documentation, client SDK generation, and API test-

ing by providing a specification that can be used to describe APIs. This specification

is written in either YAML or JSON format and includes details such as available

endpoints, operations, parameters, and responses. Swagger also supports API au-

thentication mechanisms and the description of input and output models for API

operations. The Membership API Swagger Docs is shown in Figure 3.4

Figure 3.4: API documentation example.

The api/resources directory is a repository for various non-PHP class API com-

ponents. The api/resources/notifications directory encompasses JSON config-

uration files that detail the subject and the corresponding HTML template for noti-

fications. Furthermore, api/resources/templates houses both HTML and LaTeX

templates—the latter being utilized by PHP classes for generating Authorship .tex

files. Additionally, the resources directory contains SQL queries employed by Repos-

itories for database operations such as reading, writing, updating, and deleting data,

as well as JSON schemas for validating request structures.

The src directory is where all PHP code within the project lives. As previously

explored, the backend implementation adopts two distinct architectural patterns:

the layered architecture on the left, and the hexagonal architecture on the right.

57

The fundamental distinction between these two approaches lies in the location and

application of business logic within the system’s structure. Both approaches share

similarities such as the Controller classes which process the request routed to them

by FRAPI. They also use the Repository Pattern: a design pattern used to manage

data access logic in a centralized location. It acts as an abstraction layer between

the domain model (the core business logic of your application) and the persistence

layer (the mechanism used to store and retrieve data, like databases or files).

src
Persistence
Controllers
Cronjob
DTO
Models
Repositories
Services

src
AuthorsList

Application
DeleteAcknowledgement
DeleteFundingAgency
GetAcknowledgementTex
GetAuthorsList
...
Subscribers

Domain
Event

Infrastructure
Cronjob
Persistence
Web

Notifications
Shared

...

In the Layered Architecture, the src\Controllers directory is designated for

storing Controller classes. These controllers are responsible for initiating a Data

Transfer Object (DTO) when required (specifically for write or update operations)

and subsequently invoking a Service class. The Service class implements the core

business logic pertinent to a particular domain. The src/Services/AuthorsList-

Service.php, for instance, exposes a series of methods to Controllers, including but

not limited to:

1. getAuthorsList: This method constructs an instance of the src/Models/

AuthorsList.php class, populates it with data regarding authors and insti-

tutes, processes all the information (sorts authors, assign indexes), and delivers

the assembled list back to the Controller. The Controller then serializes this

list for inclusion in the response to a request.

58

2. downloadAuthorsList: Similar in functionality to getAuthorsList, this func-

tion also compiles the authors list but di↵ers in its output by generating a

downloadable file in a specified format (e.g., PDF or .tex).

3. insert: This method accepts an AuthorsListInputDTO, performs validation

on it, and, if the data is deemed valid, it proceeds to persist this information

through a call to the Repository dependency.

4. getNonAuthors: It invokes the Repository dependency to retrieve a list of

members who do not qualify as authors. This functionality is particularly

useful for identifying all Members eligible to be considered as exceptions.

The main issue with this approach is that the Service classes quickly grew large

and became hard to maintain. This was partly caused by the fact that the classes

inside the Model namespace (src/Models) were anemic models which are considered

an anti-pattern associated with object-oriented programming, particularly in the

context of Domain-Driven Design (DDD) lacking significant or relevant behavior,

primarily focusing on holding data with minimal or no business logic encapsulated

within it.

In the Hexagonal Architecture, on the other hand, there are multiple Handlers

that process Commands for write operations. Controllers also have direct access

to Repository interfaces so that simple operations (such as the getNonAuthors use

case) don’t require a Handler for them. This approach also moves the core business

logic to the Domain. In this approach, the getAuthorsList use case starts with a

request routed to a Controller method, which uses one of its N Handler dependencies,

the Handler gathers all the information from the Persistence source with its Reposi-

tory dependencies and supplies the \src\AuthorsList\Domain\AuthorsList class

with this information for it to process. Similarly, in the insert use case, the Han-

dler will only perform persistence-dependent validations (checking if the provided

ID is unique, for example) and most of the business validation is performed in the

\src\AuthorsList\Domain\AuthorsList constructor.

59

The following code excerpts illustrate the di↵erence between the mentioned archi-

tectures by giving a general overview of the downloadAuthorsList use case, which

was first developed using the Layered Architecture and then migrated to the Hexag-

onal.

1 // \src\Controllers\AuthorsListController.php

2 public function getAuthorsListForGivenPaper(Api $api , $id) {

3 $authorsList = $this ->authorsListService ->getAuthorsList($id);

4 $json = json_encode($authorsList ->serialized ());

5 $response = $api ->getResponse ();

6 $response ->getBody ()->write($json);

7 return $response ->withHeader("Content -Type", "application/json");

8 }

9

10 // \src\Services\AuthorsListService.php

11 public function download($id , $extension , $agentId , $date = null) {

12 if ($id) {

13 $authorsList = $this ->getAuthorsList($id);

14 } else {

15 $authorsList = $this ->getAuthorsListForGivenDate($date);

16 }

17 $data = $authorsList ->serialized ();

18 return AuthorsListFilesHandlerService :: download($extension , $data , $agentId);

19 }

20

21 public function getAuthorsList($id) {

22 $authorsList = $this ->_repository ->build($id);

23 if ($authorsList ->hasPublishedInformation ()) {

24 return $authorsList;

25 }

26 return $this ->getAuthorsListWithAssignedIndexes($authorsList);

27 }

28

29 private function getAuthorsListWithAssignedIndexes(AuthorsList $authorsList): AuthorsList {

30 $authors = $this ->getAuthors($authorsList ->getReferenceDate (), $authorsList ->getId());

31 $institutes = $this ->getInstitutes($authors , $authorsList ->getReferenceDate ());

32 $institutes = $this ->setInstitutesIndexes($institutes , $authorsList ->getReferenceDate ());

33 $authors = $this ->setAuthorsIndexes(

34 $institutes["institutes -dictionary"],

35 $authors ,

36 $authorsList ->getReferenceDate ()

37);

38 $authorsList ->setAuthors($authors);

39 $exceptions = $authorsList ->getExceptionsAuthor ();

40 if ($exceptions) {

41 $exceptions = $this ->setExceptionsIndexes(

42 $institutes["institutes -dictionary"],

43 $exceptions ,

44 $authorsList

45);

46 $authorsList ->setExceptionsAuthor($exceptions);

47 }

48 $authorsList ->setInstitutes($institutes["sorted -institutes"]);

49 return $authorsList;

50 }

Listing 3.5: Layered Architecture Implementation.

In a Layered Architecture model, the interaction between the Controller and

the Service layer is very close, as the latter encapsulates the majority of the appli-

60

cation’s business logic. This design paradigm often results in the consolidation of

business logic within the Service layer, giving rise to voluminous, monolithic service

classes. This complexity is illustrated in code 3.5 (lines 11 to 49), where the Ser-

vice initially determines whether to construct an AuthorsList for a paper or for a

specific date (defaulting to the authors for the date). It then retrieves all requisite

data from Repositories and processes it. This processing entails assigning indices to

Institutes based on predefined rules, associating these indices with the Authors, or-

ganizing Authors and Institutes, and finally, transferring this processed data to the

src/Models/AuthorsList.php class. Rather than functioning as a domain model,

this class primarily acts as a data serializer, further highlighting its anemic behavior.

1 // \src\AuthorsList\Infrastructure\Web\AuthorsListController.php

2 public function downloadAuthorsList(Api $api , string $extension , int $id) {

3 $agentId = (int) $api ->getUser ()->getPersonId ();

4 $authorsList = $this ->downloadAuthorsListHandler ->handle($id , $extension , $agentId);

5

6 $response = $api ->getResponse ();

7 $response = $response ->withHeader("Content -Type", Mime:: fromExtension($extension));

8 $response = $response ->withAddedHeader("Content -Disposition", "attachment");

9 $response ->getBody ()->write($authorsList);

10

11 return $response;

12 }

13

14 // \src\AuthorsList\Application\DownloadAuthorsList\DownloadAuthorsListHandler.php

15 public function handle(int $authorsListId , string $extension , int $agentId) {

16 $authorsList = $this ->repository ->findAuthorsListById($authorsListId);

17 $authorsList ->computeAuthorsList ();

18 return AuthorsListFilesHandlerService :: download($extension , $authorsList ->serialized (), $agentId);

19 }

20

21 // \src\AuthorsList\Domain\AuthorsList.php

22 public function computeAuthorsList (): void {

23 $this ->computeInstitutesIndexes ();

24 $this ->computeAuthorsIndexes ();

25 $this ->computeExternalAuthorsIndexes ();

26 $this ->sortAllAuthors ();

27 }

Listing 3.6: Hexagonal Architecture Implementation.

In the code snippet (3.6), the distribution of tasks is optimized, facilitating a

clearer comprehension of the procedure for assembling the authorship list. Similar

to the Layered Architecture approach, the request navigates to the Controller via

FRAPI, which now interfaces with various Handlers, such as but not limited to:

• RegisterAuthorsListForPaperHandler

• UpdateGrantHandler

61

• DownloadAuthorsListForGivenDate

• GetNonAuthors

• RegisterAcknowledgementHandler

Upon receiving a request, the Controller engages the appropriate Handler to co-

ordinate the necessary operations to address the request. As delineated in (3.6),

the Handler employs a Repository to create an instance of the AuthorsList class,

supplying it with all pertinent data required for the compilation of the list. This

includes all Members eligible for authorship, any Exceptions (Authors added or re-

moved), and a catalog of Institutes. Subsequently, the AuthorsList domain class

undertakes the processing of this data, thereby consolidating all expertise related to

the list’s formation within the Domain. The construction of the list is executed via

the computeAuthorsList method, which administers a series of sub-tasks to gener-

ate and structure the author roster, their a�liations, and external contributors in

accordance with a set of criteria and regulations. The methodology is deconstructed

into four phases, as illustrated in line 21 of code (3.6).

The first step, performed in the computeInstitutesIndexes, method involves

assigning indexes to each Institute within the list. These indexes are necessary for

organizing Institues in a structured way and for referencing them e�ciently in other

parts of the authors list computation. The algorithm attributes a numeric index

to O�cial and A�liated institutes and an alphabetical one to the others. Index

attribution follows a hierarchical sorting criterion, prioritizing Country, City, and

then Institute Name. This systematic ordering culminates in a structured mapping,

where each institute is linked to a unique composite ID—integrating both its Id

and classification (External or Regular)—and a corresponding index. This associa-

tive dictionary facilitates e�cient retrieval and linkage between Institutes and their

respective Authors.

After institutes have been indexed, each Author’s index is computed based on

their Employments with these Institutes. This is first done for regular LHCb Au-

thors (in computeAuthorsIndexes) and later for External Authors (in the compute-

ExternalAuthorsIndexes method). Authors may be a�liated with one or more

62

Institutes, and their index reflects this association. The index assignment process

involves iterating through each Author, determining their a�liated Institute based

on the reference date, and then assigning the Institute’s index to them, which is

done in constant time by accessing the dictionary previously built. This step is im-

portant for organizing authors in a way that reflects their professional or academic

a�liations accurately. The same process is performed for External Authors.

Finally, the sortAllAuthors function involves sorting all Authors (both internal

and external) according to a predefined set of criteria, which includes the index, the

alphabetical order of last names, and the initials in this order of priority.

Once the list is compiled, the Handler uses a static class (line 18 of code 3.6) to

download the serialized content into a given format (PDF, .tex, for example) and

passes the content to the Controller which encapsulates it in the response object

exposed to the final user through FRAPI again.

Domain Classes have the capability to emit events, for instance, when a new

Grant is registered, the src\AuthorsList\Domain\Event\NewGrant.php event is

emitted. These events are monitored by Subscribers, as exemplified by those lo-

cated in src\AuthorsList\Application\Subscribers. Subscribers respond to the

events they receive, often by initiating notifications through the src\Notifications

classes. Employing this pattern, commonly seen in multithreaded languages such

as C#, is also beneficial in PHP to enhance the separation of concerns, delegating

specific responsibilities to more specialized namespaces.

The final Authorship Backend aspect are the Cronjob classes inside src\Cronjob.

A cron job is a scheduled task in Unix-based systems used for running scripts or com-

mands at specified times and intervals. It leverages the cron daemon, a background

process that runs continuously, checking for scheduled tasks to execute. Cron jobs

are commonly used for automating system maintenance, monitoring tasks, and rou-

tine backups. The scheduling of a cron job is defined in a cron table (crontab), which

specifies the execution time and command to be run. In the Authorship context,

cronjobs are used to send notifications when a Grant is about to expire.

63

The authorship generation process is designed to be deterministic, ensuring that

identical commands (e.g., $authorsListId) consistently produce the same author

list. Due to a stringent deadline for project delivery, unit testing was not conducted.

Instead, an integration test suite was developed within the src/Integration names-

pace. This suite performs end-to-end testing to verify the responsiveness of all end-

points to simulated requests. Additionally, the src/tests/Comparison namespace

contains a series of end-to-end tests designed to ensure the stability of the Authors

List’s content amidst code changes. These tests generate the authorship list in

various formats and compare the output against a predefined, accurate version.

In contrast to the FENCE applications, which lacked a clear separation of con-

cerns, leading to the necessity of deploying applications on a testing server for man-

ual validation of changes, the current approach allows for backend modifications

to be automatically verified. This is achieved by executing the Integration test

suite through the GitLab CI/CD (Continuous Integration/Continuous Deployment)

tools. GitLab CI/CD provides a framework for automating the testing and de-

ployment processes. It facilitates the execution of predefined test suites upon each

commit, ensuring that any code alterations do not break the existing functionality.

Figure 3.5 shows a merge request that passed the integration tests.

Figure 3.5: Gitlab Pipeline passing on Merge Request. The pipeline steps include

building the backend API with composer install, building the frontend with npm

run build, and running the backend integration test suite.

64

3.4.2 The Authorship frontend

The frontend of the Authorship System is housed within the client directory.
client

public
src

api
assets

css
images

components
mixins
plugins
router
store

modules
views

authorsList

Within this directory, the client/public folder contains the application’s entry

point HTML file, which is automatically generated by utilizing the Vue Command

Line Interface (CLI) via the vue create command. The assets folder, also located

within the client directory, stores static assets utilized by the frontend. These

assets include CSS style sheets that are applied globally across all components and

static images, such as the LHCb collaboration logo and the homepage banner.

The components folder houses the fundamental building blocks of the user inter-

face, akin to the example provided in the todo application illustrated in code 3.2.

The guiding philosophy for developing components was to resort to custom creation

only when the pre-existing components from Vuetify failed to meet specific needs

or when it was necessary to combine several Vuetify components to build a more

complex one. For instance, Image 3.6 showcases a custom component designed to

accept a LaTeX expression through its props and render the corresponding text.

Conversely, Figure 3.7 depicts a custom component crafted by integrating Vuetify’s

VDialog, which generates the modal window, with Vuetify’s VProgressLinear to

visually signify the loading process. The second one is displayed whenever a user

triggers an action and the interface must wait for the response.

65

Figure 3.6: LatexTitle.vue: Textual component to process latex code.

Figure 3.7: LoadingModal.vue: Loading popup component.

Vue Mixins are stored in the client/mixins path. A mixin object can contain any

component options. When a component uses a mixin, all options in the mixin will

be “mixed” into the component’s own options. This approach allows for a form of

“soft” inheritance, enabling component reuse without requiring complex inheritance

structures. These scripts can include a wide range of component options such as

data, methods, lifecycle hooks (e.g., created, mounted), computed properties, and

watchers. When a component uses a mixin that contains a lifecycle hook, the mixin’s

hook is called before the component’s own hook if both are defined. A very used

mixin in Glance applications is shown in code 3.7 which injects a method in all

components that import it that generates a clickable email link based on a list of

emails.

1 export default {

66

2 methods: {

3 getMailto(emails) {

4 const localMails = !Array.isArray(emails) ? [emails] : emails;

5 return ‘mailto:${localMails.join(’,’)}‘;

6 },

7 },

8 };

Listing 3.7: Mailto Mixin.

Inside the client/plugins folder, the Vuetify dependency is imported. The

client/router and the client/views folders are closely connected. In Vue.js, a

view is defined in the same way as a regular SFC: a single file with a template

HTML section, a script using the options API, and some custom, scoped styles if

necessary. The key di↵erence is that views can be referenced in the router con-

figuration located in client/router/index.js, which sets up which view will be

rendered according to the typed URL. Because views are the entry points for each

interface, they normally handle permissions by hiding/disabling specific components

of the interface according to the user’s permission. They also call store methods to

fetch the necessary information to populate the interface.

Vuex is a state management pattern and library designed for Vue.js applications

that acts as a centralized store for all the components in an application, enforcing

rules to ensure that the state can only be mutated predictably, and simplifying

information sharing across multiple components.

In code 3.8, Vuex is utilized to manage user-related data within the Authorslist

application. The stateData object contains the application’s state, including details

such as the current user, loading status, collaboration board chair appointment ID,

and lists of appointments related to the authors’ list manager. This state serves as

the single source of truth that can be accessed throughout the application. Getters in

Vuex are similar to computed properties for components. They are used to compute

derived state based on the store’s state and can be used to perform operations

like filtering data, calculating values, or even returning a subset of the state. For

example, the code 3.8 defines getters to check if the application is loading, retrieve

user information, identify user roles and appointments, and determine if a user has

67

administrative permissions or specific roles within the application. Actions in Vuex

allow for performing asynchronous operations. They can dispatch mutations, which

are synchronous transactions that directly mutate the state. In the example 3.8, the

loadUser action fetches user data asynchronously and commits mutations to update

the state based on the response. This illustrates how actions can handle complex

logic, including API calls, and orchestrate multiple mutations or even other actions.

Mutations are the correct way to actually change state in a Vuex store. They are

synchronous and provide a clear and trackable way to modify the state. The example

3.8 includes mutations such as SET_USER and SET_LOADING, which update the user

information and loading status, respectively. Similarly to the store module shown

in 3.8, there is another one to handle the Authors List state, which actions to fetch

the list, insert exceptions, download the content, and more.

1 /* eslint -disable no -unreachable */

2 import userApi from ’../../ api/user’;

3

4 const stateData = {

5 user: null ,

6 loading: false ,

7 collaborationBoardChairAppointmentId: 13,

8 authorsListManagerAppointments: [

9 ’Editorial board chairperson ’,

10 ’Editorial Board member ’,

11 ’Editorial board chairperson deputy ’,

12 ’Physics coordinator ’,

13 ’Physics coordinator deputy ’,

14],

15 };

16

17 const getters = {

18 loading: state => state.loading ,

19 user: state => state.user ,

20 userRoles(state , localGetters , rootState , rootGetters) {

21 const simulatedRole = rootGetters[’userSimulation/simulatedRole ’];

22 if (simulatedRole) {

23 return [simulatedRole];

24 }

25 return state.user.roles;

26 },

27 userAppointments(state , localGetters , rootState , rootGetters) {

28 const simulatedAppointments = rootGetters[’userSimulation/simulatedAppointments ’];

29 if (simulatedAppointments.length > 0) {

30 return simulatedAppointments;

31 }

32 return state.user.appointments;

33 },

34 userAppointmentsCategoryIds(state , localGetters) {

35 return localGetters.userAppointments.map(appointment => appointment.category.id);

36 },

37 userIsAdmin(state , localGetters) {

38 return localGetters.userRoles.includes(’admin ’);

39 },

40 userIsSecretariat(state , localGetters) {

41 return localGetters.userRoles.includes(’secretariat ’);

42 },

68

43 userHasPermissionToChangeAuthorsListFlags(state , localGetters , rootState , rootGetters) {

44 return localGetters ?.user?.id === rootGetters[’member/member ’]?.id

45 || localGetters.userIsAdminOrSecretariat;

46 },

47 userHasPermissionToManagePaper(state , localGetters) {

48 if (localGetters.userIsAdmin) return true;

49 if (localGetters.userRoles.includes(’authors -list -manager ’)) return true;

50

51 if (! localGetters.userAppointments.length) return false;

52 const appointments = localGetters.userAppointments.filter(

53 appointment => state.authorsListManagerAppointments.includes(appointment.category.name),

54);

55 if (appointments.length) return true;

56

57 return false;

58 },

59 ...

60 };

61

62 const actions = {

63 async loadUser ({ commit , dispatch }) {

64 let response = localStorage.getItem(’membershipGetUser ’);

65 response = response !== null ? JSON.parse(response) : null;

66

67 if (response) {

68 commit(’SET_USER ’, response.data);

69 dispatch(’updateUser ’);

70 return response;

71 }

72

73 commit(’SET_LOADING ’, true);

74 const userPromise = await userApi.getUser ().then((scoppedResponse) => {

75 localStorage.setItem(’membershipGetUser ’, JSON.stringify(scoppedResponse));

76 commit(’SET_USER ’, scoppedResponse.data);

77 commit(’SET_LOADING ’, false);

78 });

79 return userPromise;

80 },

81 async updateUser ({ commit }) {

82 const userPromise = await userApi.getUser ().then((response) => {

83 commit(’SET_USER ’, response.data);

84 localStorage.setItem(’membershipGetUser ’, JSON.stringify(response));

85 });

86 return userPromise;

87 },

88 };

89

90 const mutations = {

91 SET_USER(state , user) {

92 state.user = user;

93 state.user.name = user.fullName;

94 },

95 SET_LOADING(state , loadingBoolean) {

96 state.loading = loadingBoolean;

97 },

98 };

99

100 export default {

101 namespaced: true ,

102 state: stateData ,

103 getters ,

104 actions ,

105 mutations ,

106 };

69

Listing 3.8: Vuex User Store Module.

3.4.3 Database

Once the database is created, it is modified through database migrations which

are the process of applying changes or updates to a database schema—such as mod-

ifying tables, altering columns, creating indexes, or adjusting relationships between

tables—as well as changes to the data within the database. The Glance team choose

Flyway as the tool to manage database migrations. As described in the documenta-

tion [30], it is an open-source tool for database migrations that controls the process

of applying and managing schema changes across di↵erent team environments, en-

suring database integrity and consistency as applications evolve. It uses versioned

migrations, where each script is tagged with a version number and description, to

control the sequence of migration applications. The tool also employs checksums for

each migration file to detect any alterations to migrations that have already been

applied, thus safeguarding the migration process’s integrity. Flyway tracks the state

of each migration—whether pending, successful, or failed—within a designated ta-

ble known as the schema_history table, a component for identifying the migrations

that have been executed and those still pending. During its operation, Flyway con-

sults this table to determine which migrations need to be applied and proceeds to

apply each in the stipulated version order. Should a migration encounter an error,

Flyway halts the entire process, allowing for the issue to be resolved before moving

forward.

To maintain a history of data changes the team created the RFC 002, titled

“History Tables Proposal”. It is an accepted proposal aiming to standardize the

structure of history tables within Glance systems. It outlines several assumptions

including schema separation, naming conventions, table and column inclusion, the

addition of a history primary key, the exclusion of references to avoid cascade issues,

and the incorporation of auditing columns for change tracking (ACTION, AGENT_ID,

MODIFIED_ON, DIFF_COLUMN, OLD_VALUE and NEW_VALUE) in the history schema ta-

bles, which should be the same as the regular schema plus the additional columns.

70

It also details use cases such as restoring data to a specific point in time, showcasing

the practical applications of maintaining history tables for data integrity and audit-

ing. Finally, the document specifies the implementation of triggers to automatically

save changes to the history schema. These are created with a Python script that

takes as input the CREATE TABLE statements for all tables in the regular schema,

and outputs a SQL file with all the necessary CREATE TRIGGER statements.

3.4.4 Functionality Summary

Figure 3.6 displays the Authorship system homepage. From it, users can

select a Paper to visualize or manage its AuthorsList. The management page is

shown in Figures 3.8 and 3.9, from this page users can add Exceptions (removing

or adding Authors), export the list of Authors in di↵erent formats and layouts,

register Grants and Funding Agencies to be acknowledged on a paper and mark

a paper as published to prevent further modifications. The Exceptions navigation

tab highlighted in Figure 3.9 displays in red authors removed from the list, in blue

Authors who chose to have their a�liation hidden in the list and in green an Author

added to the list.

Figure 3.8: Vizualize Authors List Page.

71

Figure 3.9: Authorship Exceptions tab.

The two most used formats are the PDF format and the LaTeX format. This

first is publicly available to expose the current list of Authors in the Collaboration

and the later is usually embedded by Authors in their Papers. Figure 3.10 dis-

plays both formats side by side. This automatic list generation is the core feature

of the Authorship system, proving a reliable and standardized way for the entire

Collaboration to sign a publication.

Figure 3.10: Authorship generated files.

72

3.5 Search Implementation

The Search Library was implemented as two di↵erent packages: a backend li-

brary for creating the search endpoints and a frontend one to provide the necessary

components to build advanced search interfaces.

3.5.1 Backend: search-service

The backend library is organized similarly to the backend of the Authorship web

application. It also follows the Hexagonal Architecture as made explicit by the

directory structure, with a Domain including classes with the knowledge to convert

themselves to a piece of a SQL query.

README.md
composer.json
configuration-example.json
src

Application
DeleteSearch

DeleteSearchRepositoryInterface.php
GetSearchDetails

SearchViewRepositoryInterface.php
RunSearchWithFilters

RunSearchHandler.php
SearchInputDTO.php

SaveSearch
SaveSearchCommand.php

Domain
Conjunction.php
Exception

InvalidConfiguration.php
Field.php
Filter.php
GroupingMark.php
Operator.php
SearchConfiguration.php
SearchRepositoryInterface.php
Statement.php
Value.php

Filter
Operator.php
QueryCompilerToSQL.php
Statement.php

Infrastructure

73

Persistence
SqlSearchRepository.php

Provider
SearchProvider.php
SearchProviderFactory.php

The class Filter.php, within the namespace LHCb\Search\Domain, is designed

for processing search query strings into SQL filter strings. This transformation

involves breaking down the query into components suitable for SQL querying.

The core functionality of this class is the toSqlString method. It is responsi-

ble for converting the query string into a SQL filter string through multiple steps.

Initially, spaces within Fields and Values, encapsulated by double quotes, are en-

coded by the encodeFieldAndValueSpaces method with a custom encoding sym-

bol (__) to maintain their integrity throughout processing. Subsequently, the query

string is tokenized into individual components based on spaces. Each token is then

analyzed to determine its type, such as Field, Operator, Value, Grouping Maker,

or Conjunction, and compiled into the corresponding SQL string component. In

cases where a token is identified as an Operator, the algorithm verifies the existence

of adjacent tokens to confirm a valid Field-Operator-Value sequence, throwing an

InvalidArgumentException if either is absent. The components are then synthe-

sized into an SQL statement utilizing configuration settings and a Statement object.

Tokens identified as Grouping Marks or Conjunctions are directly translated to their

SQL counterparts. The assembly of these components results in a single string, with

spaces previously encoded as __ being reverted to actual spaces. The process con-

cludes with the SQL string being encapsulated within a WHERE clause, surrounded

by parentheses, or returning an empty string if the query yields no result.

The encodeFieldAndValueSpaces is dedicated to encoding spaces within Fields

and Values with the special marker (__) to di↵erentiate them from delimiter spaces

in the query string. This encoding is achieved by scanning the input string character

by character, replacing spaces with the custom encoding upon encountering a double

quote until its corresponding closing double quote is identified. The outcome is a

string devoid of double quotes and with spaces condensed to a singular form.

74

The pseudo-code outlined in listing 3.9 delineates the sequence of transformations

applied to a query string input. Notably, the $customMatch parameter is employed

in intricate scenarios requiring the injection of a custom WHERE clause component.

This necessity arises when the relevant data resides in a di↵erent table from the one

targeted by the query execution.

1 $queryString = "responsibleInstitutes" contain "Universidade de Santiago de Compostela"

2 ...

3 $queryString = "responsibleInstitutes" contain "Universidade__de__Santiago__de__Compostela"

4 ...

5 $tokens = ["responsibleInstitutes", "contain", "Universidade__de__Santiago__de__Compostela"]

6 ...

7 new Statement(

8 new Field("RESPONSIBLE_INSTITUTE_NAMES", "string", null),

9 new Operator("contain"),

10 new Value("Universidade de Santiago de Compostela", "string", null),

11 $customMatch

12);

13 ...

14 $sqlWhereClause = "RESPONSIBLE_INSTITUTE_NAMES LIKE ’%Universidade de Santiago de Compostela%’"

Listing 3.9: Transformations to the query string input.

Once the $sqlWhereClause is defined, it is applied to a base query and executed

on the search-service-dependent application database. The mapping from the field

responsibleInstitutes to the column RESPONSIBLE_INSTITUTE_NAMES is defined

on a JSON configuration file provided to the library by the application using it.

The frontend search library enables a variety of customizable settings, including

reordering and hiding columns, sorting information, changing pagination settings,

and more. These customizations are reflected in the Vuex JSON object that repre-

sents the interface state. This state can be saved and later retrieved through the use

of the SaveSearchCommand, which is utilized by the SearchProvider to persist the

frontend state in the database. The saved states can then be consulted or deleted.

To expose search endpoints, a dependent application must create a JSON con-

figuration file. This file should include the base query path (listing 3.10, line 2),

the lookup view name, primary key, and the primary key of the entity table. Ad-

ditionally, the file must contain mappings for each available Search Field. In the

mapping settings, it is required to define the properties type, column (the col-

umn name in the select query), and compatibleOperators. For datetime fields,

specifying the expected format is optional; if unspecified, the system defaults to

75

casting both the column date and the query string input date to the ISO 8601

yyyy-MM-dd’T’HH:mm:ss format [31]. The configuration also accommodates com-

plex matches where data is not in the Entity table, necessitating a JOIN to include

necessary columns for the WHERE clause. This is addressed by the customMatch

option shown in listing 3.10 line 23, enabling developers to inject a custom subquery

into the WHERE clause in which the Search Value will be injected replacing the

VALUE macro. A common use of customMatch is to verify if the main Entity ID

exists within a specific linking table.

1 {

2 ”query” : ” r e s ou r c e s / que r i e s / s e l e c t / i n s t i t u t e −search . s q l ” ,

3 ” lookup” : {

4 ” lookupTable ” : ”INSTITUTE LOOKUP VIEW” ,

5 ”lookupTablePK” : ”ID” ,

6 ”mainTablePK” : ”\” id \””

7 } ,

8 ” id ” : {

9 ” compatib leOperators ” : [”=” , ”!=”] ,

10 ”column” : ”ID”

11 } ,

12 ” latexName” : {

13 ” compatib leOperators ” : [” conta in ” , ”not−conta in ” , ”=” , ”!=”] ,

14 ”colum . n” : ”LAST NAME LATEX”

15 } ,

16 ” r e spon s ib l ePe r s on s ” : {

17 ” type” : ” s t r i n g ” ,

18 ” compatib leOperators ” : [” conta in ” , ”not−conta in ” , ”=” , ”!=”] ,

19 ”column” : ”\” r e spon s i b l ePe r s on s \”” ,

20 ”customMatch” : [

21 {

22 ” operator ” : ” conta in ” ,

23 ”match” : ”\” id \” IN (SELECT INSTITUTE ID FROM GL ENTITY RESPONSIBLE WHERE

RESPONSIBLE ID = VALUE)”

24 } ,

25 . . .

26]

27 } ,

28 ”modifiedOn” : {

29 ” type” : ” date ” ,

30 ” format ” : ”YYYY−MM−DD” ,

31 ” compatib leOperators ” : [”>” , ”<” , ”>=”, ”<=”, ”=”] ,

32 ”column” : ”MODIFIED ON”

33 } ,

34 . . .

35 }

Listing 3.10: Search configuration example.

The query mentioned in listing 3.10, line 2, appears in snippet 3.11. This snippet

also includes the lookup view, which consists of an ID column and a second column

that concatenates all columns utilized in the base query.

1 −− Base Query

76

2 SELECT

3 ID as ” id ” ,

4 NAME as ”name” ,

5 LATEXNAME as ” latexName” ,

6 RESPONSIBLE IDS as ” r e spons ib l ePe r s on s ” ,

7 INSPIRE NAME as ” inspireName” ,

8 ENGLISH NAME as ”englishName” ,

9 MNECODE as ”mnemonicCode” ,

10 WEBPAGE as ”webpage” ,

11 TO CHAR(MODIFIED ON, ’ yyyy−mm−dd ’) as ”modifiedOn”

12 . . .

13 FROM INSTITUTE VIEW

14

15 −− Lookup view

16 c r ea t e view INSTITUTE LOOKUP VIEW as

17 SELECT

18 i . ID ,

19 I .NAME | | I .LATEX NAME | | TO CHAR(I .MODIFIED ON, ’YYYY−MM−DD’)

20 | | I .RESPONSIBLE IDS | | I . INSPIRE NAME | | I .ENGLISH NAME | |

21 I .MNECODE | | I .WEBPAGE . . . AS lookup

22 FROM

23 INSTITUTE VIEW i

Listing 3.11: Base Query and Lookup View.

Finally, the dependent application must define a Controller method that receives

the request parameters, instantiates a SearchInputDTO, and calls the runSearch

method, passing the DTO and the path to the search configuration JSON file. The

SearchInputDTO accepts the following parameters: $offset (used for pagination;

for instance, if there is a result set of 200 records and the o↵set value is 50, the first

50 records will not appear in the response), $limit (used to limit the number of

records in the response), $sortByField (the search field used to sort the results),

$sortDesc (determines if sorting is in ascending or descending order), $lookupText

(text input used to further filter the results), and $queryString (string parsed into

the WHERE clause). The search results are always provided in a JSON format

consisting of flat objects, as exemplified in the API response shown on listing 3.13.

The SearchProvider exposes the concrete implementation of all use cases, and the

SearchProviderFactory, which takes the database credentials as input, instantiates

a SearchProvider, resolving all its dependencies

1 public function search (Api $api) {

2 $responseBody = nu l l ;

3 $ input = $api−>getRequest ()−>getParameters () ;

4 $searchParameters = new SearchInputDTO($ input) ;

5 try {

6 $responseBody = json encode (

7 $ th i s−>searchProvider−>runSearch (

8 $searchParameters ,

9 DIR . " / . . / . . / . . / . . / r e s o u r c e s / s e a r c h / i n s t i t u t e . j s o n "

77

10)

11) ;

12 } catch (\ Inval idArgumentException $e) {

13 $ th i s−>throwForbiddenException ($e−>getMessage ()) ;

14 }

15 $ response = $api−>getResponse () ;

16 $response−>getBody ()−>wr i te ($responseBody) ;

17 return $response−>withHeader (" content - t y p e " , " a p p l i c a t i o n / j s o n ") ;

18 }

Listing 3.12: InstituteController’s search method.

1 {

2 ” r e s u l t s ” : [

3 {

4 ” id ” : ”2” ,

5 ”name” : ”Univers idade Federa l do Rio de Jane i ro (UFRJ) ” ,

6 ” latexName” : ”Univers idade Federa l do Rio de Jane i ro (UFRJ) ” ,

7 ” r e spon s ib l ePe r s on s ” : ”1 ; 2 ; 3” ,

8 ” inspireName” : ”Rio de Jane i ro Federa l U.” ,

9 ”englishName” : ” Federa l Un ive r s i ty o f Rio de Jane i ro (UFRJ) ” ,

10 ”mnemonicCode” : ”RIO” ,

11 ”webpage” : ”www. i f . u f r j . br” ,

12 . . .

13 ”modifiedOn” : ”2007−05−11”

14 } ,

15 {

16 ” id ” : ”1” ,

17 ”name” : ”CBPF − Centro B r a s i l e i r o de Pesqu i sas F i s i c a s (CBPF) ” ,

18 ” latexName” : ”Centro B r a s i l e i r o de Pesqu i sas F{\\ ’\\ i } s i c a s (CBPF) ” ,

19 ” r e spon s ib l ePe r s on s ” : ”4 ; 5 ; 6” ,

20 ” inspireName” : ”Rio de Jane i ro , CBPF” ,

21 ”englishName” : ”CBPF − Braz i l i a n Center f o r Phys ics Research (CBPF) ” ,

22 ”mnemonicCode” : ”CBP” ,

23 ”webpage” : ”www. cbpf . br” ,

24 . . .

25 ”modifiedOn” : ”2007−05−11”

26 }

27] ,

28 ”numberOfResults ” : ”4”

29 }

Listing 3.13: Search output example.

3.5.2 Search frontend

The search frontend components constitute the foundational elements for con-

structing an advanced search interface. Encapsulated within the SuperSearch

wrapper, they aim to minimize the boilerplate code required for configuring the

interface. An example of an SFC template for the Institute Search interface, uti-

lizing the SuperSearch wrapper, is illustrated in listing 3.14. This component re-

quires a set of obligatory properties, including a table-title and the headers,

which are JSON objects delineating the column names and their corresponding

78

keys in the item list retrieved from the backend. Furthermore, the provision of

the search-function prop is also mandatory; it assigns the JavaScript function

responsible for querying the backend API to fetch the search results. This function

receives a searchParameters argument, which the search frontend library automat-

ically supplies. These parameters are then used to instantiate the SearchInputDTO

on the backend. Similar processes apply for the functionalities of saving, loading,

and deleting search templates. The filter-options specifies the available Search

Fields within the interface, while the user object is required for performing autho-

rization checks. Additionally, the router property is essential for the library to

interpret the search parameters derived from the URL query string. In the template

(listing 3.14, lines 17-24), the usage of slots API enables developers to customize

each column by substituting the default text content with alternatives. In the script

portion of the Institute Search SFC (presented on listing 3.15), the search mixin is

incorporated, granting access to the search state—including pagination parameters,

the current querystring, and the presently loaded results—and providing methods

to execute search operations. These operations encompass generating a new querys-

tring based on user inputs and executing a GET request to the API. For instance,

the getSearchResults method (imported from the mixin) is invoked within the

mounted hook to initiate the loading of an empty search, thereby ensuring that the

process of fetching all entities starts immediately upon the user’s page access.

1 <template >

2 <VContainer fluid>

3 <SuperSearch

4 table -title="Institute search"

5 :headers="headers"

6 :search -function="searchInstitute"

7 :filter -options="filterOptions"

8 :selectable -rows="false"

9 :entity -details -route=" ’/membership/institute/details /:var_id ’"

10 :search -type="{id: 4, name: ’Institute search ’}"

11 :save -search -function="saveSearchFunction ()"

12 :load -searches -function="loadSearchesFunction ()"

13 :delete -search -function="deleteSearchFunction ()"

14 :user="user"

15 :router="vueRouter"

16 >

17 <template v-slot:item.membersStatus="{ item }">

18 <VChip

19 :color="membersStatusColor(item.membersStatus)"

20 small

21 >

22 {{ item.membersStatus }}

23 </VChip >

24 </template >

25 ...

79

26 </SuperSearch >

27 </VContainer >

28 </template >

Listing 3.14: Institute Search SFC template.

1

2 <script >

3 import { mapActions , mapMutations , mapGetters } from ’vuex’;

4 ...

5 import searchApi from ’../../ api/search ’;

6

7 export default {

8 name: ’ModelSearch ’,

9 components: { SuperSearch },

10 mixins: [searchMixin],

11 data() {

12 return {

13 headers: [

14 { text: ’Details ’, value: ’id’, width: 70 },

15 { text: ’Name’, value: ’name’, width: 350 },

16 { text: ’Members Status ’, value: ’membersStatus ’, width: 70 },

17 ...

18 { text: ’Collaboration Entry Date’, value: ’entryDateString ’, width: 110 },

19 { text: ’Comments ’, value: ’comments ’, width: 500 },

20],

21 filterOptions: [

22 {

23 name: ’Id’, value: ’id’, operators: [’equals ’, ’different from’], type: ’VTextField ’,

24 },

25 {

26 name: ’Name’, value: ’name’, operators: [’contains ’, ’does not contain ’, ’equals ’, ’

different from’], type: ’VTextField ’,

27 },

28 {

29 name: ’Members Status ’,

30 value: ’membersStatus ’,

31 operators: [’equals ’, ’different from’],

32 type: ’VAutocomplete ’,

33 items: [{ name: ’Active ’ }, { name: ’Inactive ’ }, { name: ’Upcoming ’ }],

34 optionName: ’name’,

35 optionValue: ’name’,

36 },

37 ...

38 {

39 name: ’Collaboration Entry Date’, value: ’entryDate ’, operators: [’equals ’, ’greater or

equals ’, ’less or equals ’, ’greater than’, ’less than’, ’different from’], type: ’Date’,

40 },

41 {

42 name: ’Comments ’, value: ’comments ’, operators: [’contains ’, ’does not contain ’, ’is

empty’, ’is not empty ’], type: ’VTextfield ’,

43 },

44],

45 greybookLink: ’https :// greybook.cern.ch/greybook/institute/detail?id=’,

46 exception: {

47 jiraLink: process.env.VUE_APP_JIRA_LINK ,

48 errorMessage: null ,

49 },

50 };

51 },

52 computed: {

53 ... mapGetters(’user’, [

54 ’user’,

55]),

56 vueRouter () {

80

57 return this.$router;

58 },

59 },

60 mounted () {

61 this.getSearchResults ();

62 },

63 methods: {

64 ... mapActions(’search ’, [’getSearchResults ’]),

65 ... mapActions(’institute ’, [’searchInstitute ’, ’fetchAllInstitutes ’]),

66 ... mapMutations(’exception ’, [’activeException ’]),

67 saveSearchFunction: () => searchApi.saveSearch ,

68 loadSearchesFunction: () => searchApi.loadSearches ,

69 deleteSearchFunction: () => searchApi.deleteSearch ,

70 membersStatusColor(membersStatus) {

71 switch (membersStatus) {

72 case ’Active ’:

73 return ’success ’;

74 case ’Inactive ’:

75 return ’error ’;

76 default:

77 return ’primary ’;

78 }

79 },

80 },

81 };

82

83 </script >

Listing 3.15: Institute Search SFC script.

As illustrated in Figure 3.11, every search component encapsulated within the

SuperSearch demonstrates the system’s modular design. This flexibility allows de-

velopers to craft distinct data visualization interfaces, catering to scenarios where

an advanced search interface may be unnecessarily complex. Within the Member-

ship system, a specific requirement exists to categorize institutes based on their

Participation Type. While the Institute Search page could serve this purpose, a

more intuitive solution involves a table accompanied by a dropdown list enumer-

ating all Participation Types. Upon selection, the system dynamically populates

the table with Institutes corresponding to the chosen type, as depicted in Figure

3.12. This simplification is achieved by replacing the advanced search components

via the Slots API and incorporating a select input. The input modification trig-

gers a change in the searchValue, leading to the generation of a new query string:

"participationStatus" = "active"

AND "participationStatusId" = "${this.searchValue}".

This query string, along with additional search parameters, is dispatched to the

backend API for processing. The API, in turn, retrieves the pertinent data to

81

populate the table with the results.

Figure 3.11: Institute Search Components.

Figure 3.12: Simpler search visualization to list all Institutes according to their

Participation Type.

82

3.6 Membership Implementation

The implementation of the Membership system occurred within a period when

the Hexagonal Architecture was firmly established as the chosen design paradigm

for the Glance systems. Consequently, the Membership system does not exhibit a

heterogeneous architectural approach similar to that of the Authorship system. The

implementation provided the same existing functionalities and mostly improved use

cases that benefit from the new Super Search and introduced approval workflows

and interfaces with graphs.

3.6.1 The Membership Architecture

It was established by the team that the Membership system would encompass the

Authorship system and proceed to integrate the additional functionalities within the

same application, as Authorship inherently falls within the purview of the Member-

ship system’s responsibilities. Unlike the singular context termed Authorship within

the Authorship system, the Membership system encompasses multiple requirements

that do not uniformly align within a single domain. Here, the concept of Bounded

Context (BC) as described on [32] significantly enhances the structural organiza-

tion of the application. Bounded Context strategically addresses the complexities of

large models and team coordination by partitioning a system into distinct segments,

each characterized by its cohesive domain. This methodology not only facilitates

a clearer segmentation of the system’s components but also enhances team com-

munication and understanding. Central to DDD is the creation of software that

accurately reflects the domain’s foundational models, fostering a shared language

between developers and domain experts. This shared or Ubiquitous Language en-

sures consistency within a Bounded Context, while also acknowledging the imprac-

ticality of a singular model spanning a vast system. DDD advocates for the division

of the system into Bounded Contexts, each with a model that maintains internal

consistency yet may diverge from others, particularly concerning common concepts

such as Members. An LHCb Member in the Member context/namespace contains

all the registration information the collaboration stores for its members, including

the profile picture, list of Appointments, Employment, and more. A Member in the

83

Authorship context, on the other hand, is an Author and only contains the required

information for authorship purposes. Communication between Bounded Contexts is

done using the Classes from the Application Layer (Handlers and Repository Inter-

faces) which can have dependencies from Application-layer classes of a di↵erent BC.

Inside the same BC, dependencies still point inwards (Infrastructure classes depend

on Application-layer classes, which depend on Domain classes).

The Modular Monolith concept is relatively recent in the Software Engineering lit-

erature. Ruoyu Su and Xiaozhou Li conducted a literature review on [33] and defined

a Modular Monolith as “a software architecture pattern that strategically combines

the simplicity of a monolithic structure with the advantages of microservices. In

this approach, the system is organized into loosely coupled modules, each delin-

eating well-defined boundaries and explicit dependencies on other modules.” This

definition is similar to the classical Monolith definition because it still envisages the

application as a single deployable unit, ensuring simplicity in deployment and oper-

ation management (as it is not necessary to ensure compatibility of di↵erent service

versions such as in microservices). However, it di↵ers in that it emphasizes modu-

larity, loose coupling, and independence within the application’s internal structure,

promoting ease of development, testing, and potential for scaling specific parts of

the application without the need to scale everything. Loose coupling is achieved by

defining clear dependencies between the modules through interface contracts. An-

other major di↵erence between the classical monolithic application and a Modular

Monolith is that the latter tends to incentivize code organization based on di↵erent

Domains instead of class type (Controller, Model, Repository, etc.) as described in

Shopify’s engineering article [34]. In the Membership context, each Bounded Con-

text can be seen as an independent module, with its own domain definitions and

the dependencies between modules modules occur through the Application layer in

module’s use cases are exposed. Figure 3.13 illustrates the Membership as a Modular

Monolith. Each module has its own namespace in the application.

84

Figure 3.13: Membership Bounded Contexts.

3.6.2 Workflow Tracking

Membership Version 2 introduced significant enhancements, notably in the tooling

for managing internal processes via an approval workflow. The primary motivation

for these developments was the newcomer registration process, as detailed in section

2.4.3. After conducting a series of interviews with the Secretariat, the process was

remodeled, as depicted in Figure 3.14. A key modification is the implementation

of a cron job that continually queries CERN’s HR internal APIs. This automation

detects newcomer registrations at CERN and initiates the LHCb registration process

by creating a NewcomerRegistrationRequest. This temporary entity encapsulates

all information from CERN HR, along with additional details necessary for LHCb

registration, and links to the NewcomerRequestState entity that tracks the request’s

current status. The newly introduced workflow has a similar number of actions when

compared to the one shown in section 2.4.3, but its key innovation lies in automating

information transfer, thereby reducing manual work. Also, by creating a multi-

step approval process, it also reduces the number of incorrect information persisted

85

in the database. In the most common scenario, newcomers submit all required

information to CERN HR and provide additional details for LHCb. Assuming the

accuracy of this information, the Team Leader approves the request with a simple

button press, a procedure also followed by the Secretariat as exemplified in Figure

3.15. Notifications are automatically dispatched by the system in response to state

changes, significantly reducing the volume of emails exchanged among participants.

Following the implementation of the newcomer registration workflow, the use of the

LHCb PDF registration form was discontinued. Each state change in the approval

process required a Handler class (linked to an API endpoint called by an action

button in the interface) to update the NewcomerRequestState in response to an

event (exemplified in listing 3.16). In other words, there was no state transition

function to automatically evolve the state based on an event publication. This

aspect improves when workflows are modeled as automatons.

Figure 3.14: Newcomer registration workflow refactored.

86

Figure 3.15: Newcomer Request management page pending Secretariat approval.

The release of the Newcomer registration workflow catalyzed the development

of additional multi-step approval workflows for Members transitioning to di↵erent

Institutes, altering Professions, or extending their Employments. Similar to the

Newcomer registration process, these workflows were developed with a Command

and Handler for each state transition (such as a button pressed on the interface to

change a request to “Rejected”), leading to a phenomenon known as class explosion.

This term describes a situation where the number of classes in a system becomes

excessively large as a result of attempts to accommodate every possible variation of

a problem or requirement through inheritance or the creation of fine-grained classes

for every piece of functionality. It was observed that the approval and rejection

operations predominantly involved updating the state of the Request entity (the

possible states are shown in a state transition diagram in Figure 3.16), as exemplified

in listing 3.16. The way to avoid these unnecessary Handlers is to model the approval

workflows as automatons and introduce a state transition function that could be

called from a single Handler based on events published by other parts of the system.

In practice, this would mean that instead of having one API endpoint for each action

button (buttons to approve a request, reject a request, and submit a request) there

could be one generic endpoint to post events mapped to a Handler that calls the

state transition function passing the event as argument.

87

The diagram from Figure 3.16 can be formalized using the automaton concept

already explored. Let G = (X,⌃, f,�, x0, Xm) be the automaton describing the

approval process. Then

X = {U, V,W,X, Y, Z};⌃ = {a, b, c, d, e, f, g, h}

For any state x 2 X and event � 2 ⌃ :

f(x, �) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

V if (x, �) = (U, a)

T if (x, �) = (U, b)

W if (x, �) = (V, d)

T if (x, �) = (V, e)

V if (x, �) = (W, c)

T if (x, �) = (W,h)

Y if (x, �) = (T, f)

Z if (x, �) = (T, g)

T if (x, �) = (Y, h)

V if (x, �) = (Y, c)

x otherwise

�(K) = ⌃ for all K 2 X; x0 = U ;Xm = {Z}

The same formulation applies to all the di↵erent Membership approval workflows

currently available involving the Secretariat and Team Leaders.

Concurrently with the necessity to reduce the class explosion (evident by the num-

ber of classes in the directory structure in 3.6.2) and the implementation of a new

system for managing LHCb publication approvals, a pressing need emerged for an

enhanced workflow tracking solution. This solution should e↵ectively manage a com-

plex graph scenario where the user specifies two states and a sequence of events

required for transitioning between these states. The existing challenge is that

previously demonstrated graphs (such as in Figure 3.16) typically feature a single

event linking two states. The proposed solution, therefore, must accommodate more

intricate interactions handling multiple events within state transitions.

88

1 public function handle (ApproveNewEmploymentRequestCommand $command) : i n t

2 {

3 $newEmploymentRequest = $ th i s−>workflowReadRepository

4 −>findNewEmploymentRequest ($command−>memberId ()) ;

5 $ i n s t i t u t eL e ad e r s I d s = $ th i s−>workflowReadRepository−>f i n d I n s t i t u t eL e ad e r I d s (

$newEmploymentRequest−>i n s t i t u t e I d ()) ;

6

7 $newEmploymentRequest−>addState (

8 new WorkflowState (

9 $ th i s−>workf lowRepository−>findNextNewEmploymentRequestStateId () ,

10 WorkflowState : : APPROVED BY INSTITUTE LEADER,

11 $command−>comments () ,

12 $command−>agentId ()

13) ,

14 $command−>memberId () ,

15 $ i n s t i t u t eL e ad e r s I d s

16) ;

17

18 $ th i s−>workf lowRepository−>i n s e r t S t a t e s ($newEmploymentRequest , $command−>agentId ()) ;

19 $ th i s−>eventDispatcher−>d i spa t chAl l ($newEmploymentRequest−>r e l e a s eEvent s ()) ;

20 return $newEmploymentRequest−>id () ;

21 }

22 }

Listing 3.16: Example of handle method to deal with the press of the approve button

by the TL (Team Leader).

Application
ApproveChangeInstituteRequest
ApproveChangeProfessionRequest
ApproveNewEmploymentRequest
ApproveNewcomerRequest
....
GetChangeInstituteRequestDetails
GetChangeProfessionRequestDetails
....
GetNewEmploymentRequestDetails
GetNewcomerRequestDetails
...
RejectChangeInstituteRequest
RejectChangeProfessionRequest
RejectNewEmploymentRequest
RejectNewcomerRequest
SubmitChangeInstituteRequest
SubmitChangeProfessionRequest
SubmitNewEmploymentRequest
SubmitNewcomerRequest

Figure 3.16: Newcomer registration re-

quest graph.

89

To address class explosion and minimize boilerplate code in state transitions, a

new generic Workflow BC was developed. This was also inspired by the LHCb Anal-

ysis Lifecycle Management System (ALCM), which is designed around the concept

of using graph theory to track the evolution and state transitions of various types

of documents published by LHCb through their review procedures. The require-

ment for multiple events between transitions comes from ALCM, where a document

usually goes to the next stage in the review process based on multiple approvals

(events).

In this scenario, the review stage/status is not represented as a state in a directed

graph because changes are controlled by a list of specific events. To address this,

a generic Workflow engine is introduced to manage the lifecycle of an entity. The

process begins with the creation of a new Workflow class, which accepts an array of

Transitions in its constructor. Each Transition consists of an initial State, a target

State, an array of Events that occur in relation to the tracked entity, and an array

of Conditions (analogous to events) required for a State change from the current

to the target. Figure 3.17 exemplifies the registration of a Workflow with 3 States

(A, B and C). The instantiation of a new Workflow class is done is listing 3.17.

Transitioning from A to B requires the events x, y and z. From B to C only m and

n. The automaton that describes this Workflow is G = (X,⌃, f,�, x0, Xm) where

X = {A,A1, A2, A3, A4, A5, A6, B,B1, B2, C};⌃ = {x, y, z,m, n}

Let nij be the number of Conditions between State i and State j. The number of

intermediate states for each pair (i, j) is 2nij � 2. This indicates that the number of

intermediate states grows exponentially with the number of events, emphasizing the

need to register states only on demand, as demonstrated in the handleNewEvent

method in listing 3.18.

For this reason, this Workflow engine is designed in a way that intermediate states

are abstracted from the user and handled internally, being only necessary to provide

the initial and final States (the Stages). In the present work, a State registered

by the user is also referred to as a Stage, these are the meaningful States to the

final application user which must be displayed on the interface. When registering

90

a new Workflow, the marked State will always be the current Stage in Transition

without target Stage. The class shown in listing 3.18 does the processes of evolving

the intermediate states and is used by the Transition class isFulfilled method,

shown in listing 3.19, to determine if all the Transition Conditions were satisfied.

This approach allows for the registration of all relevant States and Transitions

through which an Entity can progress, as exemplified in listing 3.17.

Figure 3.17: Graph for three Stages A, B, and C. To go from A to B, events x, y,

and z must occur. To go from B to C, events m and n must occur. A, B, and C

are provided by the user and the remaining States are dynamically generated.

1 $workflow = new Workflow (

2 $event−>en t i t y Id () ,

3 FigureStage : :DRAFTING,

4 [

5 new Trans i t i on (

6 FigureStage : :DRAFTING, // c u r r e n t s t a g e // A

7 FigureStage : : TO BE REVIEWED, // n e x t s t a g e // B

8 [Condit ion : : c r e a t e (FigureReadyForReview : : ACTION ID , nu l l)] , // a n a l o g o u s

to x , y , z

9 [] ,

10) ,

11 . . .

12 new Trans i t i on (

13 FigureStage : : TO BE REVIEWED, // B

14 FigureStage : :APPROVED, // C

15 [Condit ion : : c r e a t e (FigureApproved : : ACTION ID , nu l l)] , // a n a l o g o u s to m , n

16 [] ,

17) ,

18 new Trans i t i on (FigureStage : :APPROVED, nul l , [] , [] ,) ,

19]

20) ;

21 $ th i s−>r epo s i t o ry−>reg i s te rWork f low ($workflow , $event−>agentId ()) ;

Listing 3.17: Workflow registration for a Figure document to be approved by the

EB.

91

1 class InnerStatesGraph {

2 private $ s t a t e s = [] ;

3 private $events = [] ;

4 private s t r i n g $cur r entSta te ;

5 private s t r i n g $ f i n a l S t a t e ;

6

7 public function c on s t r u c t (s t r i n g $ in i t ia lStateName , s t r i n g $ f inalStateName) {

8 $ th i s−>cur r en tSta t e = $ i n i t i a lS ta teName ;

9 $ th i s−>f i n a l S t a t e = $ f inalStateName ;

10 $ th i s−>s t a t e s [$ i n i t i a lS ta teName] = [] ;

11 }

12

13 public stat ic function f romTrans i t ion (Trans i t i on $ t r a n s i t i o n) : s e l f {

14 $graph = new s e l f ($ t r an s i t i on −>cur rentStage Id () , $ t r an s i t i on −>ta rge tS tage Id ()) ;

15 foreach ($ t r an s i t i on −>entryCondit ions () as $cond i t i on) {

16 $graph−>addEvent ($condit ion−>ac t i on Id () . " - " . $condit ion−>memberId ()) ;

17 }

18 return $graph ;

19 }

20

21 public function addEvent (s t r i n g $eventKey) : void {

22 $ th i s−>events [$eventKey] = $eventKey ;

23 }

24

25 public function handleNewEvent (ActionPerformed $act ion) : void {

26 $eventKey = $act ion−>ac t i on Id () ;

27 i f (! i n a r r ay ($eventKey , $ th i s−>events)) {

28 $eventKey = $eventKey . " - " . $act ion−>agentId () ;

29 }

30 i f (! i n a r r ay ($eventKey , $ th i s−>events)) {

31 return ;

32 }

33 i f ($ th i s−>cur r en tSta t e === $ th i s−>f i n a l S t a t e) {

34 return ;

35 }

36 $currentEvents = $ th i s−>s t a t e s [$ th i s−>cur r en tSta t e] ?? [] ;

37

38 i f (! i n a r r ay ($eventKey , $currentEvents)) {

39 $currentEvents [] = $eventKey ;

40 s o r t ($currentEvents) ;

41 $newStateName = implode (" , " , $currentEvents) ;

42 $ th i s−>s t a t e s [$newStateName] = $currentEvents ;

43 $ th i s−>cur r en tSta t e = $newStateName ;

44 }

45

46 i f ($ th i s−>i s F i n a l ($currentEvents)) {

47 $ th i s−>cur r en tSta t e = $ th i s−>f i n a l S t a t e ;

48 }

49 }

50 private function i s F i n a l ($eventsRece ived) : bool {

51 return count ($eventsRece ived) === count ($ th i s−>events) ;

52 }

53 public function getCurrentState () {

54 return $ th i s−>cur r en tSta t e ;

55 }

Listing 3.18: Class that handles intermediate states.

1 public function i s F u l f i l l e d () : bool

2 {

3 $graph = InnerStatesGraph : : f romTrans i t ion ($ t h i s) ;

4 foreach ($ th i s−>performedActions as $act ion) {

5 $graph−>handleNewEvent ($act ion) ;

92

6 }

7 return $graph−>getCurrentState () == $ th i s−>ta rge tS tage Id ;

8 }

Listing 3.19: Transition class isFulfilled method.

The Workflow class implements a check to prevent the registration of lifecycles

with locks. This means that if G is an automaton that describes the entity lifecycle,

then Lm(G) = L(G), otherwise there are locks. To perform this validation, it is

not necessary to analyze any intermediate states, as those are internally handled

by the system in a way that locks will not arise. To exemplify this validation, a

higher-level view of the graph from Figure 3.17 is displayed in Figure 3.18. In this

case the automaton G = (X,⌃, f,�, x0, Xm) with

X = {A,B,C};⌃ = {v, k}

In the given example, a visual inspection su�ces to ascertain that the automaton ex-

hibits nonblocking behavior. The HighLevelStatesGraph class, referenced in listing

3.21, computationally confirms this by identifying all viable paths originating from

the initial State. The class checks the no-lock condition: Lm(G) = L(G) by executing

the following steps: First, it uses the method findAllPaths($startState) to gen-

erate all possible paths from the initial State, which represent the generated language

L(G). It then filters these paths using filterPathsEndingAtFinalState($paths)

to retain only those paths that lead to the final (marked) State, representing the

marked language Lm(G). Next, the class verifies whether every path in the generated

language L(G) can reach the marked State. This is done in the isNonblocking()

method, which checks if all paths found in L(G) are also present in the filtered

paths leading to the final State. If there exists any path in L(G) that cannot be

extended to reach the marked State, the method returns false, indicating that

Lm(G) 6= L(G), and thus, there are locks in the system. If all paths can reach the

marked State, the method returns true, confirming Lm(G) = L(G) and indicating

a nonblocking system.

This class functionality is used in the Workflow class constructor, which leverages

it to validate the sequence of transitions. If a transition sequence is detected that

93

does not comply with the nonblocking condition, the constructor raises an excep-

tion, thereby preventing the creation of a workflow that could potentially lead to a

deadlock or an incomplete process execution.

Figure 3.18: Graph for three Stages A, B, and C.

The Workflow BC provides a SaveAction subscriber that can be invoked when-

ever an Event occurs to advance the State in the Entity workflow graph. This

subscriber acts as the State transition function of the system, updating

the State according to an Event received. The lifecycle will evolve through the

intermediate States until all Conditions are met and a Transition from a State to a

Stage occurs, indicating that the Entity State has moved to the next Stage (target

State registered by the user). Through the SaveAction subscriber, the application

backend is equipped with a singular Application Use Case to post a generic Event.

For Membership, this means that instead of having a unique Handler/Com-

mand pair for changing the entity State (as illustrated in listing 3.16), a generic

PostEventHandler could be utilized for all approvals and rejections, solving the

class explosion problem. This Handler would emit an Event that is captured by

the SaveAction invokable class (shown in listing 3.20). If a Transition is fulfilled

(such as when the Secretariat rejects a Newcomer Request, moving it from the State

“Approved by TL” to “Rejected by Secretariat” as the “Secretariat Rejects

Request” Condition in the Transition from “Approved by TL” to “Rejected by

Secretariat” is satisfied by the “Secretariat Rejected Request” Event. This

Transaction is marked in orange in Figure 3.16) a new Transition Fulfilled Event is

dispatched. This can be monitored to, for instance, trigger a notification.

1 f ina l c lass SaveAction

94

2 {

3 private $ r epo s i t o r y ;

4 private $eventDispatcher ;

5 . . .

6 public function i nvoke (ActionPerformed $event) : void

7 {

8 $workflow = $ th i s−>r epo s i t o ry−>f indWorkflow ($event−>en t i t y Id ()) ;

9 $workflow−>recordPerformedAction ($event) ;

10 $ th i s−>r epo s i t o ry−>savePerformedAction (

11 $event−>en t i t y Id () ,

12 $event−>ac t i on Id () ,

13 $event−>agentId () ,

14 $event−>comments ()

15) ;

16

17 i f ($workflow−>c u r r e n tT r an s i t i o nFu l f i l l e d ()) {

18 $workflow−>proceed () ;

19 $ th i s−>r epo s i t o ry−>updateWorkflowStage (

20 $workflow−>en t i t y Id () ,

21 $workflow−>cur rentStage Id () ,

22 $event−>agentId ()

23) ;

24 }

25 $ th i s−>eventDispatcher−>d i spa t chAl l ($workflow−>r e l e a s eEvent s ()) ;

26 }

27 }

Listing 3.20: Workflow registration for a Figure document to be approved by the

EB.

1 class HighLevelStatesGraph {

2 private $ t r a n s i t i o n s = [] ;

3 private $ s t a t e s = [] ;

4 private $ i n i t i a l S t a t e ;

5 private $ f i n a l S t a t e ;

6

7 public stat ic function f romTrans i t i ons (array $ t r an s i t i o n s , $ i n i t i a l S t a t e) : s e l f {

8 $graph = new s e l f ($ i n i t i a l S t a t e) ;

9 foreach ($ t r a n s i t i o n s as $t) {

10 $graph−>addTrans i t ion ($t−>cur rentStage Id () , $t−>ta rge tS tage Id ()) ;

11 }

12 return $graph ;

13 }

14

15 public function c on s t r u c t ($ i n i t i a l S t a t e) {

16 $ th i s−> i n i t i a l S t a t e = $ i n i t i a l S t a t e ;

17 }

18

19 public function addTrans i t ion ($from , $to) : void {

20 $ th i s−>s t a t e s [$from] = true ;

21 i f ($to === nu l l) {

22 $ th i s−>f i n a l S t a t e = $from ;

23 } else {

24 $ th i s−>t r a n s i t i o n s [$from] [] = $to ;

25 $ th i s−>s t a t e s [$to] = true ;

26 }

27 }

28

29 public function i sNonblock ing () : bool {

30 $a l lPaths = $ th i s−>f indAl lPaths ($ th i s−> i n i t i a l S t a t e) ;

31 $pathsToFinal = $ th i s−>f i l t e rPathsEnd ingAtF ina lS ta t e ($a l lPaths) ;

32 foreach ($a l lPaths as $path) {

33 i f (! i n a r r ay ($path , $pathsToFinal)) {

34 return f a l s e ;

95

35 }

36 }

37 return t rue ;

38 }

39

40 public function i sLocked () : bool {

41 return ! $ th i s−>i sNonblock ing () ;

42 }

43

44 private function f indAl lPaths ($ s t a r t S t a t e) : array {

45 $a l lPaths = [] ;

46 $ th i s−>explorePaths ($ s ta r tS ta t e , [] , $a l lPaths) ;

47 return $a l lPaths ;

48 }

49

50 private function explorePaths ($current , $v i s i t ed , &$paths , $path = ’ ’) : void {

51 i f (i s set ($v i s i t e d [$current])) {

52 return ;

53 }

54 $v i s i t e d [$current] = true ;

55 $path .= $path ? " - > " . $current : $current ;

56

57 i f (empty($ th i s−>t r a n s i t i o n s [$current])) {

58 $paths [] = $path ;

59 } else {

60 foreach ($ th i s−>t r a n s i t i o n s [$current] as $next) {

61 $ th i s−>explorePaths ($next , $v i s i t ed , $paths , $path) ;

62 }

63 }

64 $v i s i t e d [$current] = f a l s e ;

65 }

66

67 private function f i l t e rPathsEnd ingAtF ina lS ta t e ($paths) : array {

68 return a r r a y f i l t e r ($paths , function ($path) {

69 return s t rpo s ($path , $ th i s−>f i n a l S t a t e) !== f a l s e ;

70 }) ;

71 }

72 }

Listing 3.21: Class to prevent blocking states.

3.6.3 Features

The Membership system primarily manages the core data entities through profile

pages. On a Member’s profile page, LHCb Members, the Secretariat, and Team

Leaders have the capability to view and update personal information. This includes

changes to their publication name, profile picture, and initiating modifications to

their Employment details such as Profession, Employment period, or Institute af-

filiation. Additionally, the system supports various other updates pertinent to a

member’s profile. Figure 3.19 illustrates a Member’s profile within the system.

96

Figure 3.19: Membership Member profile.

The Institute profile page is primarily utilized by Team Leaders and Resource

Coordinators for financial oversight, particularly regarding M&O data. To facilitate

access to M&O information, an export feature is available, enabling the download

of a CSV file that encapsulates the data presented on the interface. This function-

ality, among other user-centric enhancements, significantly augments the system’s

usability. Implementing such customizations within the Fence framework would

be notably labor-intensive, as they extend beyond the basic capabilities of Fence’s

configuration files. Conversely, with Vue, developers have the flexibility to enrich

components, for instance, by adding an export button using the Slots API. This

adaptability also extends to the incorporation of complex data visualizations like

the graphs visible in Figure 3.20, made feasible through the revamped architecture.

Furthermore, the Institute profile page o↵ers functionalities for editing an Institute’s

registration details and managing its Participations, with Figure 3.20 illustrating the

profile of the UFRJ Institute within the LHCb experiment.

97

Figure 3.20: UFRJ Institute profile.

While Figure 3.15 introduces the interfaces for workflow management, additional

interfaces facilitate the management of all available workflows. Specifically, the

management page for the Change Profession Workflow is shown in Figure 3.21.

Through this interface, Team Leaders and the Secretariat can review the list of all

active processes. Analogous interfaces are available for managing the Change Insti-

tute Workflow, as well as the New Employment and Extend Employment Workflows,

streamlining the oversight and administration of these processes.

98

Figure 3.21: Change Profession Request being reviewed.

Graphs were introduced in the Vue-based version of the Membership system, as

illustrated in Figure 3.20. These visualizations are also featured on public pages, for

example, the Collaboration Map, which displays the number of LHCb participants,

as depicted in Figure 3.22. Additionally, the Glance team collaborated with the

ECGD (LHCb’s Early Career, Gender & Diversity O�ce) to generate graphs that

analyze the gender distribution within LHCb, shown in Figure 3.23.

Figure 3.22: Countries that participate in the LHCb experiment.

99

Figure 3.23: Not real (mocked) gender distribution data presented in the Member-

ship.

Search interfaces for Appointments, Members, Institutes, and Employments fa-

cilitate data retrieval for the system’s primary entities. Figure 3.24 illustrates the

system’s Homepage, which indexes all available views. From this central hub, users

can navigate to specific search interfaces and access their Member and Institute

profiles.

100

Figure 3.24: LHCb Membership homepage and search interfaces.

Data reports, including reminders for necessary actions, are dispatched via email

through code in the Infrastructure Layer. This layer utilizes the same Application

Layer Repository interfaces that the web Controller employs to display information

in HTTP response bodies. A frequently dispatched email report highlights poten-

tial discrepancies between the Membership database and CERN’s HR database, as

depicted in Figure 3.25. This inconsistencies report is sent to the Secretariat every

101

Monday, enabling them to address and resolve them.

Figure 3.25: Membership inconsistencies report sent weekly via email.

102

Chapter 4

Results

This chapter aims to identify evidence that the new architectural pattern has

improved team productivity and enabled the system to o↵er functionalities that

were not possible with the Fence version. To establish a timeline of events for

correlation with the presented data: the Authorship system was deployed in March

2020; following its success, the LHCb Equipment Management System version 2

was released in September 2020; and the Membership Version 2 was released in May

2021.

4.1 Cummulative flow chart

A Cumulative Flow Diagram (CFD) is a visual tool in Jira Software that tracks the

status of project issues over time, providing a dynamic representation of workflow

progress. It organizes work items into various statuses (done, blocked, to do, in

progress, and in validation), plotted against time on the x-axis and the number of

issues on the y-axis, with each area of the chart color-coded to represent di↵erent

workflow statuses. This diagram is used for identifying workflow bottlenecks by

revealing any segments that widen over time, indicating an accumulation of issues.

An increase in “Done” items, such as observed in Figure 4.1 around the release

date of the new Authorship and LBEMS systems, on a CFD generally signifies

positive developments in project progress and team performance. This trend may

indicate enhanced productivity as the team completes tasks more e�ciently. It also

suggests an e↵ective workflow management strategy, timely meeting of deadlines,

103

and successful issue resolution.

Figure 4.1: CFD graph extracted from Glance’s Jira board.

4.2 Solved versus created report

The “Solved vs.Created” report in Jira is a tool for tracking the rate at which

issues are resolved compared to how many are created within a project over a specific

period. This report shown in Figure 4.2 plots two lines on a graph: one representing

the number of issues created and the other the number of issues solved over time.

An upward trend in the “Solved” line relative to the “Created” line in this report

indicates positive project health and team e�ciency. It suggests that the team is

e↵ectively addressing and resolving issues faster than new ones are being reported,

contributing to the project’s forward momentum. Consistently solving more issues

than are created can lead to increased stakeholder confidence, as it demonstrates the

team’s capacity to handle challenges and maintain control over the project’s scope.

In Figure 4.2 it is possible to notice an inflection point around the Authorship and

LBEMS release dates, indicating performance gains by using the new architecture.

104

Figure 4.2: Solved vs. Created issues in the LHCb Glanace systems.

A pie chart displaying the distribution of issue types within a Jira Software project

provides a visual breakdown of where the team’s e↵orts are being allocated, catego-

rizing issues into types such as stories, bugs, tasks, etc. An increase in the percentage

of story issues and a decrease in the percentage of bug issues, as depicted in Figure

4.3, can o↵er observations into the project’s current phase and overall health. The

shift towards a higher proportion of story issues as observed in Figure 4.3 might

suggest that the project is in a phase of active development or feature expansion,

with the team focusing more on adding new functionalities or enhancements. On

the other hand, a decrease in the percentage of bug issues could signal improvements

in the quality of the codebase or the e↵ectiveness of the project’s quality assurance

processes.

105

Figure 4.3: Issues according to their type.

4.3 Test coverage

In the version of the Membership system powered by Fence, automated testing

was absent. With the introduction of a decoupled architecture in the subsequent it-

eration, automated integration testing was established to verify the stability of API

endpoints against code alterations. Integration of these tests with Gitlab CI ensures

that merge requests are only approved subsequent to the successful completion of all

tests. This strategy, prioritizing integration tests, was influenced by the observation

that modifications to the database and persistence layers were predominantly re-

sponsible for breaking changes. The distribution of test cases across di↵erent classes

is illustrated in Table 4.1.

Table 4.1: Test Classes and Number of Tests

Test Class Number of Tests

AppointmentTest.php 12

AuthorsListTest.php 7

CountryTest.php 6

EmploymentTest.php 15

GrantTest.php 8

InstituteTest.php 11

106

Table 4.1 – continued from previous page

Test Class Number of Tests

MemberTest.php 14

NewcomerTest.php 10

ParticipationTest.php 4

ReportTest.php 3

WorkflowTest.php 27

4.4 Adoption by external systems

Two other web applications at CERN rely on Member information: the Speakers

Bureau system, which assigns members to available talks and workshops, and the

LHCb Shift system, which allocates members to shifts in the LHCb detector control

room to assist in the 24/7 monitoring of the detector’s operation. Prior to Mem-

bership Version 2, extracting data automatically from the Membership system was

feasible only via direct database access, potentially violating OC11 regulations. Con-

sequently, these systems would often maintain their internal lists of Members and

Institutes, resorting to manual synchronization with the Membership database—the

authoritative source for this data.

The launch of Membership Version 2, which now o↵ers a REST API, has sig-

nificantly streamlined the process for related systems at CERN. These systems no

longer require maintaining internal databases; instead, they directly access Member

and Institute information via specific API endpoints. They can internalize this data

through if needed and employ a polling mechanism to periodically refresh the infor-

mation. To encourage and simplify integration, the Glance team developed a ba-

sic Python SDK (software development kit), recognizing that both applications are

Python-based. This SDK abstracts the authentication and API call process, allowing

for straightforward data retrieval through the search_member method with the nec-

essary search parameters. Listing 4.1 showcases the search_member function being

used to find a specific member based on their CERN identifier. Listing 4.2 displays

the search_member method implementation, utilizing the get_api_access_token

107

function, also provided by the SDK, to retrieve the bearer token required for com-

municating with the Membership API.

1 from search_members import search_members

2

3 print(search_members(

4 offset = 0,

5 limit = 10,

6 queryString = ’"personId" = "840720" ’

7)

8)

Listing 4.1: Membership Python SDK usage.

1 def search_members(offset , limit , queryString):

2 load_dotenv ()

3 target_client_id = os.getenv(’TARGET_CLIENT_ID ’)

4 client_id = os.getenv(’CLIENT_ID ’)

5 client_secret = os.getenv(’CLIENT_SECRET ’)

6 api_base_url = os.getenv(’API_BASE_URL ’)

7

8 try:

9 api_token = get_api_access_token(client_id , client_secret , target_client_id)

10 except Exception as e:

11 raise(Exception(’Token exchange failed. Please check the user and the application credentials ’))

12

13 queryString = urllib.parse.quote_plus(queryString)

14 url=f’{api_base_url }/ members/search?offset ={ offset }&limit={ limit }& queryString ={ queryString}’

15 headers = {’Authorization ’: f’Bearer {api_token}’}

16 #In case you need to use a proxy , uncomment both the following line and also the one on the request.

You also need to set your proxy address and port

17 #proxies = {" https": "http ://127.0.0.1:54321"}

18

19 try:

20 response = requests.get(

21 url ,

22 headers=headers ,

23 verify=False ,

24 #proxies=proxies

25)

26 except Exception as e:

27 print(e)

28 raise(Exception(’API call failed. Please check the API endpoint ’))

29 return response.json()

Listing 4.2: Membership SDK implementation.

4.5 Acknowledgements

A noteworthy and subjective outcome was the marked improvement in user satis-

faction with the newly implemented systems. By employing Domain-Driven Design,

developers were able to create features more closely aligned with real-life processes

rather than generic, contextless CRUD operations. This enhancement in functional-

ity received recognition in significant collaboration meetings, as illustrated in Figure

108

4.4, underscoring the Glance team’s growing significance at CERN and a�rming the

e�cacy of the new architecture.

Figure 4.4: Acknowledgement.

109

Chapter 5

Conclusion

CERN provides a distinctive environment for teams to experiment, adapt, and

advance technologies and processes. In this setting, the Glance team successfully

overhauled the Membership system with a new architectural design. This initiative

aimed to enhance system usability and incorporate previously unavailable features,

stemming from the constraints of the Fence-based architecture. By re-evaluating

Membership and Authorship requirements, it became evident that the system could

be better tailored to support real-world processes. This realization underscored

the need to transition to a technology su�ciently flexible to allow integrating the

requested new functionalities. The development of the Authorship system, serving

as a proof of concept for the Hexagonal Architecture with a decoupled backend API

and frontend, allowed the team to standardize the Hexagonal Architectural pattern.

This pattern not only established a standard approach for software development but

also maintained the flexibility and modularity necessary for implementing complex

and unique features such as the Search Library, implemented to fulfill the gap left by

the Fence Super Search, unblocking the Membership refactor project. Following the

establishment of the technology stack, Membership System Version 2 was launched

by mid-2021. Subsequent to its release, two additional systems were developed

using the same architectural principles, further validating the new architecture’s

robustness.

Even though the new architecture facilitated the integration of novel features and

yielded quantifiable productivity enhancements, areas for further improvement exist.

110

The adoption of the Slim Framework 4 coupled with the application-specific mid-

dlewares in place of FRAPI could potentially boost performance. This transition

would enable applications dependent on FRAPI, such as the Membership system,

to perform configurations directly within the code rather than utilizing JSON con-

figuration files, thereby avoiding file-read operations. This also gives developers

the freedom to only install the middlewares that are actually going to be used by

their applications. A great e↵ort to remove FRAPI’s CERN-specific middlewares to

standalone bundles, particularly those managing authentication and authorization,

is currently a priority for the Glance team allowing applications to combine these

middlewares with the Slim Framework without FRAPI. Another aspect of possible

enhancement on the backend is the implementation of more caching solutions. Given

the frequent querying of numerous entities throughout the day, in-memory caching

could significantly speed up common searches. CERN’s proprietary server infras-

tructure o↵ers developers a wide array of hosting options, further facilitating these

improvements. On the frontend, transitioning the script section of Vue’s SFCs from

JavaScript to TypeScript would also be beneficial. TypeScript o↵ers advantages over

JavaScript, including static typing, class-based object-oriented programming, and

compile-time error checking, which collectively enhance code reliability and main-

tainability. Another proposed enhancement involves refining the search interfaces

to intuitively deduce the Search Field based on user input. For instance, if a user

begins typing “10/01...”, the system could automatically recommend date-related

Search Fields, thereby streamlining the user interface from three inputs to a single,

more intuitive input. This modification aligns with overarching principles advocat-

ing for simplified user interfaces. Lastly, upgrading from Vue 2 to Vue 3 would

facilitate the adoption of the new Composition API, which provides a more flexible

and modular approach to composing component logic. This upgrade would lever-

age the Composition API’s advantages, including improved TypeScript support,

enhanced reusability, and better code organization, thereby elevating the frontend

development experience.

111

Bibliography

[1] HAPPYCODERS.EU, “Hexagonal Architecture - What Is It? Why Should

You Use It?”, 2024, Accessed February 18, 2024.

[2] SAP, “Separation of Concerns - ABAP Keyword Documentation”, 2023, [On-

line; accessed 17-Jan-2024].

[3] FOWLER, M., Refactoring: Improving the Design of Existing Code. Pearson

Education Inc., 2019.

[4] KIM, M., ZIMMERMANN, T., NAGAPPAN, N., “An Empirical Study of

Refactoring Challenges and Benefits at Microsoft”, IEEE Transactions on Soft-

ware Engineering, , March 2014.

[5] “The Large Hadron Collider”, Accessed: 2024-01-24.

[6] “ATLAS Experiment”, Accessed: 2024-01-24.

[7] “CMS Experiment”, Accessed: 2024-01-24.

[8] “ALICE Experiment”, Accessed: 2024-01-24.

[9] “LHCb Experiment”, Accessed: 2024-01-24.

[10] MAIDANTCHIK, C., GRAEL, F. F., GALVãO, K. K., et al., “Glance Project:

a database retrieval mechanism for the ATLAS detector”, Journal or Confer-

ence Name, , Year of Publication.

[11] LANGE, B., MAIDANTCHIK, C., POMMES, K., et al., “An object-oriented

approach to deploying highly configurable Web interfaces for the ATLAS ex-

periment”, J. Phys.: Conf. Ser., v. 664, n. 6, pp. 062026, 2015.

112

[12] SIMãO, M. G., “Architectural Patterns to Support the Development of REST

APIs at CERN”, Projeto de Graduação, July 2023, Orientador: Flávio Luis de

Mello.

[13] MICROSOFT, “Visual Studio Code Remote Development: Open any folder

in WSL, in a Docker container, or on a remote machine using SSH and take

advantage of VS Code’s full feature set”, https://github.com/Microsoft/

vscode-remote-release/labels/ssh, 2024, Accessed: 28-Jan-2024.

[14] SILVA, G. J. S. E., FILHO, C. H. F. B., CORTI, G., et al., “Glance Search

Library”, The European Physical Journal Conferences, v. 295, pp. 05006, 2024.

CC BY 4.0.

[15] RADIGAN, D., “JQL: The most flexible way to search Jira”, Work Life by

Atlassian, , January 2023.

[16] NIELSEN, J., “Search: Visible and Simple”, Nielsen Norman Group, , May

2001.

[17] RAWOOL, A., “How to Design Advanced Search Interface – Step by Step”,

2024, Accessed: 2024-01-28.

[18] TEIXEIRA, M. D. J., Decoupling User Interfaces and Business Logic in the

Development of the Equipment Management System for the LHCb Experiment

at CERN. Projeto de graduação, Escola Politécnica, Universidade Federal do

Rio de Janeiro, December 2022.

[19] LHCb Collaboration, “The LHCb Constitution”, Available from the LHCb

Collaboration, 2020, Ratified by the Collaboration Board on 4th December

2020.

[20] ROSALA, M., PERNICE, K., “User Interviews 101”, 2023, Accessed: 2024-02-

04.

[21] EVANS, E., Domain-Driven Design: Tackling Complexity in the Heart of Soft-

ware. Addison-Wesley Professional, 2003.

113

https://github.com/Microsoft/vscode-remote-release/labels/ssh
https://github.com/Microsoft/vscode-remote-release/labels/ssh

[22] “CERN ALCM Public Analysis”, https://lbfence.cern.ch/alcm/public/

analysis, Accessed: 2024-05-14.

[23] COMMISSION, E., “Data protection - European Commission”, Website ex-

plaining the EU’s data protection rules, including the General Data Protection

Regulation (GDPR).

[24] DEPARTMENT, C. H. R., “The processing of personal data at CERN”, Jan

2019.

[25] COCKBURN, A., “Hexagonal architecture”, 2005, Accessed February 18, 2024.

[26] Adobe Experience Cloud Team, “Single-page applications (SPAs) — what

they are and how they work”, https://business.adobe.com/blog/basics/

single-page-applications-spas, 07 2023, Accessed February 21, 2024.

[27] Vue.js Team, “Vue 2 End of Life (EOL) Announcement and Transition to Vue

3”, 2023, Accessed February 18, 2024.

[28] “Single-File Components”, 2023, Accessed February 18, 2024.

[29] SmartBear Software, “Swagger: Simplify API Development”, 2024, Accessed

February 28, 2024.

[30] Redgate, Flyway Documentation. Cambridge, UK, Redgate, February 2024.

Accessed March 04, 2024.

[31] “ISO 8601”, https://en.wikipedia.org/wiki/ISO_8601, Accessed: 2024-03-

09.

[32] FOWLER, M., “Bounded Context”, https://martinfowler.com/bliki/

BoundedContext.html, 2014, Accessed: 2024-03-10.

[33] SU, R., LI, X., “Modular Monolith: Is This the Trend in Software Architec-

ture?”, 2024, Accessed: 2024-03-19.

[34] WESTEINDE, K., “Deconstructing the Monolith: Designing Software that

Maximizes Developer Productivity”, Shopify Engineering Blog, , 2019. Ac-

cessed: 2024-03-12.

114

https://lbfence.cern.ch/alcm/public/analysis
https://lbfence.cern.ch/alcm/public/analysis
https://business.adobe.com/blog/basics/single-page-applications-spas
https://business.adobe.com/blog/basics/single-page-applications-spas
https://en.wikipedia.org/wiki/ISO_8601
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html

Chapter 6

Stakeholder feedback

Gloria Corti, a Senior Physicist at CERN, worked closely with the author to define

the requirements for the Membership system and other systems used for radiological

protection. Her feedback on the author’s participation in the LHCb collaboration is

attached below.

“Gabriel’s work has been exceptionally good. He was very proactive

and looked for solutions, taking into account constraints and possible

outcomes and investigating all related aspects of a problem. He was

always very conscientious and very careful to verify his work fulfilled the

requirements given by the stakeholders. The work he did for the LHCb

membership and the equipment management is highly valuable and eased

administrative tasks of the LHCb secretariat and Radiation Protection

Experts. We use the Glance systems almost daily. He put the basis of a

modular, very powerful super-search and workflow management that we

are exploiting in other new systems we are putting in place. He did it in

a general way such that they can also be used by other experiments. In

addition, he did so in the very di�cult time of Covid, with the constraints

it caused. Gabriel was also very good with transmitting his knowledge

to the new students that joined him in LHCb and the other students

working on Glance in the other experiments. For me, Gabriel was one of

the best students we had, careful, thoughtful, and he became extremely

competent in the two years he spent with us.”

115

	Introduction
	Theme
	Scope
	Justification
	Objectives
	Methodology
	Description

	Related work
	CERN
	Glance & Fence
	Super Search
	The LHCb Membership
	Collaboration organization
	Business requirements
	Workflow Project
	Discrete-Event Systems

	Implementation
	Data exchange across CERN systems
	Hexagonal architecture
	Frontend architecture
	Authorship Implementation
	The Authorship Backend
	The Authorship frontend
	Database
	Functionality Summary

	Search Implementation
	Backend: search-service
	Search frontend

	Membership Implementation
	The Membership Architecture
	Workflow Tracking
	Features

	Results
	Cummulative flow chart
	Solved versus created report
	Test coverage
	Adoption by external systems
	Acknowledgements

	Conclusion
	Bibliografia
	Stakeholder feedback

