
ANOMALY DETECTION IN SURVEILLANCE VIDEOS USING

DEEP RESIDUAL NETWORKS

Lucas Pinheiro Cinelli

Projeto de Graduação apresentado ao Curso

de Engenharia Eletrônica e de Computação

da Escola Politécnica, Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Enge-

nheiro.

Orientadores: Eduardo A. B. da Silva

Lucas Arrabal Thomaz

Rio de Janeiro

Fevereiro de 2017

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Eletrônica e de Computação

Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária

Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que

poderá inclúı-lo em base de dados, armazenar em computador, microfilmar ou adotar

qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibli-

otecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja

ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que

sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

iv

DEDICATION

To my future self

To my friends

To my parents

v

ACKNOWLEDGMENTS

First and foremost, I am grateful to my parents and family, who have always

supported me no matter what and whom I can count on.

Furthermore, I would like to thank both my advisers Eduardo da Silva and Lucas

Thomaz, as well as their patience and willingness in helping me; Professor Paulo

Diniz, who introduced me to them and without whom I would consequently be

lost; Allan for his ideas and tips throughout this project; and the members of the

committee, Sérgio Lima Netto and José Fernando de Oliveira, whom I know and

appreciate.

I could not go without deeply thanking Igor Quintanilha and Roberto Estevão,

with their knowledge, insightful suggestions and jokes about our desperateness; and

my dear friends Antonio Lobato, Carlos Oliveira, Eduardo Barretto, Hugo Sadok,

Thiago Cosenza and Ulisses Figueiredo, who embarked in this journey with me half

a decade ago.

At last, to all professors of our departament, DEL/UFRJ, that I had the pleasure

to exchange ideas with, discuss with and learn from, I am eternally thankful.

vi

RESUMO

A detecção eficaz de anomalias em v́ıdeos de vigilância em diversos cenários é

um grande desafio em Visão Computacional. Esse trabalho propõe uma aborda-

gem de subtração de background baseada em redes neurais residuais, uma recente

técnica de Deep Learning, capaz de detectar múltiplos objetos de tamanhos diferen-

tes através da segmentação individual e simultânea dos pixels. O algoritmo recebe

como entrada uma imagem de referência (sem anomalia) e uma de alvo, que devem

estar temporalmente alinhadas, e computa o mapa de segmentação com a mesma

resolução da imagem de entrada. Experimentos mostram desempenho competitivo

na base de dados analisada, assim como capacidade de processamento em tempo

real.

Palavras-Chave: aprendizado profundo, redes residuais, subtração de fundo, seg-

mentação, detecção de anomalia, vigilância, tempo real.

vii

ABSTRACT

Efficient anomaly detection in surveillance videos across diverse environments rep-

resents a major challenge in Computer Vision. This work proposes a background

subtraction approach based on the recent deep learning technique of residual neural

networks capable of detecting multiple objects of different sizes by pixel-wise fore-

ground segmentation. The proposed algorithm takes as input a reference (anomaly-

free) and a target frame, which should be temporally aligned, and outputs a segmen-

tation map of same spatial resolution. Experiments show competitive performance

in the studied dataset, as well as real-time capability.

Keywords: deep learning, ResNet, residual networks, background subtraction,

segmentation, anomaly detection, surveillance, real-time.

viii

Acronyms

AI - Artificial Intelligence

ANN - Artificial Neural Network

API - Application Programming Interface

BG - Background

BN - Batch Normalization

CDNET - Change Detection .net

CNN - Convolutional Neural Network

CPU - Central Processing Unit

FC - Fully-connected

FG - Foreground

FOV - Field-Of-View

GPGPU - General-purpose computing on graphics processing units

ILSVRC - ImageNet Large Scale Visual Recognition Challenge

ML - Machine Learning

MLP - Multilayer Perceptron

MoG - Mixture of Gaussian

NN - Nearest Neighbor

ix

PTZ - Pan-Tilt-Zoom

RGB - Red Green Blue

ROI - Region Of Interest

SFO - Static Foreground Object

SGD - Stochastic Gradient Descent

UFRJ - Universidade Federal do Rio de Janeiro

VDAO - Video Database of Abandoned Objects

x

Contents

1 Introduction 1

1.1 Theme . 1

1.2 Scope . 1

1.3 Proposal and objectives . 2

1.4 Methodology . 2

1.5 Text structure . 3

2 Theoretical foundations 5

2.1 Machine learning . 5

2.2 Deep learning . 6

2.2.1 Motivation . 6

2.2.2 History . 7

2.2.3 The neuron model and the classical MLP 8

2.2.4 Convolutional neural networks 11

2.2.5 Layers . 12

2.2.6 The learning process . 23

2.3 Residual networks . 28

3 Related work 33

3.1 Video surveillance and Anomaly detection 33

3.2 Deep learning image segmentation . 36

4 Databases 38

4.1 ImageNet . 38

4.2 CDNET . 39

4.3 VDAO . 41

xi

5 Proposed convolutional network 46

5.1 The Torch framework . 46

5.2 The network architecture . 46

5.2.1 Proposed changes . 46

5.3 Pre-processing of input video . 48

5.4 Training phase . 51

5.4.1 Full-training . 55

5.4.2 Fine-tuning . 55

5.5 Post-processing of network output . 57

6 Results 58

6.1 Original setting . 58

6.2 Modifications to the LeNet5 architecture 59

6.3 Modifications to the ResNet architecture 67

6.4 Use of pre-trained models . 72

6.5 Summary . 73

7 Future work and conclusion 78

7.1 Future work . 78

7.2 Conclusion . 79

Bibliography 81

xii

List of Figures

2.1 Biological and artificial neuron models 9

2.2 Arrangement of neurons in Multilayer Perceptron 10

2.3 The LeNet-5 network architecture . 12

2.4 2D convolution operation . 14

2.5 Pooling operation examples . 16

2.6 Sigmoid and hyperbolic tangent functions 17

2.7 The rectified linear unit function . 17

2.8 Dilated operation examples . 22

2.9 Error curves comparison between regular plain and residual nets . . . 28

2.10 The residual block of a ResNet . 29

2.11 Diagram of a regular plain and a residual architecture 32

3.1 Fully convolutional networks for image segmentation 36

3.2 Deep background subtraction . 37

4.1 Example of ImageNet’s hierarchical structure 39

4.2 video frame samples from CDNet database 43

4.3 Objects used in VDAO single-object videos 44

4.4 Objects used in VDAO multiple-objects videos 45

5.1 Different possible adaptation schemes to reuse pre-trained networks . 49

5.2 Learning rate decay schedules employed 54

5.3 Different possible adaptation schemes to reuse pre-trained networks . 56

6.1 Performance curves of original architecture for different RMSProp

hyper-parameter values . 60

6.3 F1-score and loss curves for the bilinear up-sampling version of [1] . . 63

xiii

6.4 F1-score and loss curves for the deconvolutional versions of [1] 64

6.5 F1-score and loss curves for 100 epochs of the best deconvolutional

model . 65

6.6 Checkerboard patters in deconvolutional models 66

6.7 F1-score and loss curves for the dilated versions of [1] 66

6.8 F1-score and loss curves for the bilinear up-sampling residual net-

works based on ILSVRC . 68

6.9 F1-score and loss curves for 100 epochs of the best up-sampling ResNet

model . 69

6.10 F1-score and loss curves for the deconvolutional residual networks . . 70

6.11 F1-score and loss curves for the dilated residual networks 71

6.12 F1-score and loss curves for fine-tuned up-sampling residual networks 73

6.13 F1-score and loss curves for the fine-tuned dilated residual networks . 74

6.14 Examples of segmentation results for the CDNET database using the

LeNet-based models . 76

6.15 Examples of segmentation results for the CDNET database using the

ResNet-based models . 77

xiv

List of Tables

2.1 Size in number of parameters of 2 different networks 18

2.2 Performance comparison of different deep networks 31

4.1 Statistics of high level categories of the ImageNet dataset 40

4.2 CDNet database video categories . 42

5.1 Videos used during training and validation 52

6.1 Summary of hyper-parameter values used for RMSProp 59

6.2 Summary of metrics for the best single epoch of each trained model . 75

xv

Chapter 1

Introduction

1.1 Theme

The present work deals with the foreground segmentation and anomalous object

detection in surveillance videos. It focuses on machine learning, a branch of artifi-

cial intelligence, to perform automatically this task. More precisely, it investigates

the use of deep learning methods to perform pixel-wise foreground segmentation in

target frames by comparing them to reference images.

1.2 Scope

The present work is mainly concerned with analyzing existing feed-forward neu-

ral network architectures and how they may apply to the foreground segmentation

problem in a known scenario. Hence, it does not bother to classify the objects nor

the scenarios according to preset labels (e.g dog, bottle, backpack, park, factory).

Furthermore, instance segmentation1 is not discussed here either, only pixel-wise

segmentation2 is considered.

1It extends image segmentation to include the notion of different instances of the same class,

that is, it is aware of each object of each class individually.

2The task of assigning a label to each pixel of an image, thus dividing the image into separate

categories.

1

1.3 Proposal and objectives

Background subtraction is embedded in a wide range of image processing appli-

cations, such as surveillance and tracking, since it is frequently employed as one of

the first steps in computer vision frameworks [2]. However, designing a system that

can handle diverse environmental conditions still is a major challenge in this area.

Furthermore, those background subtraction methods have been almost solely devel-

oped for static cameras, consequently, they do not perform satisfactorily in videos

where there is translational or rotational motion.

On the other hand, deep learning presents itself as a powerful tool to automatically

learn and extract abstract representations of data by building a hierarchy of features

along the network, from simple low-level representations to task-specific high-level

ones. The deep learning approach has led to breakthroughs in image classification,

segmentation, and object detection, among others tasks, thus raising the question

of how far it can be pushed. Hence, this project takes upon itself the mission of

being one of the first to combine both deep learning and background subtraction to

achieve proper pixel-wise foreground segmentation, aspiring to carry the excellent

results shown in other domains over to the one at hand.

The main objective is to adapt famous and well-performing deep learning network

architectures to predict the pixel-wise foreground segmentation of a given input

image. Specifically, the current work aims to:

1. Propose and discuss different adaptations to existing architectures that were

primarily designed for solving other problems;

2. Evaluate the performance of such networks and compare to other existing

foreground segmentation methods.

1.4 Methodology

The work will port several deep learning networks acclaimed within their applica-

tion fields to the numeric computing framework Torch7 [3]. After transforming archi-

tectures originally designed for image classification and multi-label semantic segmen-

2

tation into models capable of outputing a dense pixel-wise probability, the models

will be trained in a set of video frames taken from the change detection database

[4], a publicly available database specifically designed for background/foreground

segmentation.

Several modification schemes shall be further experimented with according to in-

spirations of other well-performing techniques in deep learning, aiming to maximize

the specificity of the network. All these different architectures will then be tested

against a validation set, that is, another set of video frames with no overlap what-

soever with the training one.

The approach to be adopted throughout the project is similar to that adhered

by Brahams et al [1], where they use as input to a deep neural network a two-

channel image with one channel being a simple background model and the other

the grayscale version of the image to be analyzed. Although some have opted for

different frameworks [5], we feel that these deviate from the beauty of deep learning

in that they break from the end-to-end concept.

The success of this work will be assessed by verifying that the proposed network

is at least competitive with [1] while being faster and more efficient. Also, an

investigation of whether it is also effective in more challenging videos [6], i.e. an

industrial plant footage from a moving camera in a closed circuit, is possible.

1.5 Text structure

Chapter 2 briefly mentions the role of machine learning in computer science and

provides a historical overview of neural networks. Then it introduces the basic

notions of deep learning so that the reader can comprehend what has been developed

in this work.

Chapter 3 reviews the related work in video surveillance and image segmentation

found in literature, indicating the differences between the developed method and

other approaches and how they motivated this project.

3

The video databases employed for training, validating and evaluating the con-

structed algorithms are presented in Chapter 4.

Chapter 5 discusses the deep learning architectures used along with minute ex-

planations of changes made and their motivation. It also describes how video data

is divided and employed for training and validation.

Next, Chapter 6 shows the results obtained through the different architectures

examined, reasoning about the attained performances and the disparity among them.

Finally, Chapter 7 summarizes the work done and debates about its benefits,

ending with considerations about possible future works and axes of research that

can be undertaken in order to improve results and foreground segmentation with

deep learning in general.

4

Chapter 2

Theoretical foundations

This chapter starts with a brief description of the computer science subfield de-

voted to solve real-world problems by making data-driven decisions, the machine

learning domain.

Secondly, it presents a historical overview of artificial neural networks (ANN)

followed by explanation of concepts. Then, it treats the more recent subject of deep

learning along with the fundamental bricks employed in such approach.

Finally, it discusses Residual Networks at length, the convolutional neural net-

work (CNN) architecture family of choice for the present system, highlighting their

advantages.

2.1 Machine learning

Artificial Intelligence (AI) is the Computer Science field that aims to produce a

machine capable of perceiving its environment and interacting with it purposefully

to attain a goal. Experience suggests that AI obtains better results by constructing

their own knowledge based on data. The AI branch devoted to the study and

construction of algorithms that can learn from and make predictions on data is

called Machine Learning (ML). According to [7], ML is the only viable approach to

building AI systems that can operate in complicated, real-world environments.

5

The objective of an ML algorithm is to, given input data X, predict its output

by employing a mapping function which is assumed to be parameterized. This

mapping is found by going through training samples that belong to the training set

and latter evaluated on new unseen examples which forms the testing set. Hence,

the performance of those algorithms will depend upon the representation of the

data they are given. Each of those representations is called a feature and ML must

correctly correlate them to the possible outcomes. A very basic ML algorithm but

yet strikingly present on daily life is the naive Bayes approach, which is a key

method in filtering spam e-mail [8].

Machine learning can be divided into three main categories according to the learn-

ing process, i.e. how the training occurs:

• Supervised learning: Both input samples and their correct outputs are

available. The goal is to learn a general function that maps inputs to outputs.

• Unsupervised learning: There is no labeled output, the algorithm should

unveil the underlying structure of the input by itself.

• Reinforcement learning: There are not input/output pairs either, but

rather rewards from the dynamic environment with which the algorithm in-

teracts in order to achieve a goal.

2.2 Deep learning

2.2.1 Motivation

As mentioned previously in Section 2.1, a great number of AI tasks can be easily

solved if the correct set of features is given. Nevertheless, for most tasks knowing

which features to extract is not a trivial matter, in fact it requires a great deal of

domain knowledge and insight.

One approach to overcome this barrier is to grasp through machine learning the

representation of data. This is known as representation learning and often results

in much better performance than hand-crafted representations.

6

However, even then, extracting abstract features may be challenging since pro-

found comprehension of the data is frequently needed. This is where deep learning

excels at: it introduces representations that are built upon simpler ones, going from

bottom up. By learning to represent the world as a nested hierarchy of concepts, it

achieves unprecedented flexibility and performance.

Naturally, many deep learning applications are highly profitable and not surpris-

ingly many top technology companies have begun using it, e.g. Google, Microsoft,

Facebook, IBM, Baidu and NVIDIA.

As a side note, there is no threshold to a model to be considered deep. Instead,

deep learning should be considered the machine learning domain that employs a

much greater amount of explicitly learned concepts than traditional machine learning

models.

2.2.2 History

Artificial neural network history begins in 1943 with McCulloch-Pitts neuroscience-

based linear neuron model [9] whose weights had to be manually set. Only in the

late 1950s did Rosenblatt’s perceptron neuron arise, capable of learning the weights

for each output category by input samples. The goal was to obtain a structured way

to solve general learning problems.

However, all those models were linear and suffered from numerous drawbacks.

Quite remarkable was the fact that no model could learn the simple XOR function

which heavily contributed to the NN’s first disappearance.

It was not until the 1980s that ANNs were rediscovered under the central idea that

learning may be handled by combining several small simple units together whether

they are neurons in human brain or units in computational models. While in this

second wave, the back-propagation algorithm was successfully transported from the

control theory domain to ML [10] and it still is by far the most used algorithm for

training (see Section 2.2.6 for detailed explanation).

7

Nonetheless, neural networks had several problems: a large number of parameters

to optimize, absence of large datasets to train with, low computational power at the

time. All of this culminated in overfitting during training, poor performance during

testing and in really slow training even for a small net. Thus, neural networks dove

back into oblivion in the mid-1990s.

The third and present wave has been triggered mainly by Geoffrey Hinton [11]

who demonstrated how to separately pre-train each layer of a specific type of ANN

and was able to achieve state-of-the-art results in 2006.

Systems, whether animals or computers, become more intelligent as the number

of neurons working together increases. A small set of neuron units is not particularly

useful. Nowadays, the computational resources available1 allow running much larger

models [12] in a feasible amount of time.

Moreover, the age of Big Data has given enormously more data to construct

datasets with and feed to learning algorithms [7]. As a consequence, the performance

attainable by machine learning has soared.

Only in 2012, deep learning started to be noticed by the computer vision commu-

nity after [13] proposed the deep learning architecture Alexnet, which won one of

the most important challenges in computer vision, the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) and outperformed the runner-up by an error rate

more than 10% lower.

2.2.3 The neuron model and the classical MLP

In neural networks, a single computation unit is called a neuron. Similar to the

biological neuron, an artificial one takes in multiple input signals from its dendrites

and injects output signals onto its axon which will further branch and connect to

1As follows Moore’s law, much faster CPUs are available, but beyond that General Purpose

Graphics Processing Units (GPGPU) allow highly parallel computing and are the leading tech-

nology for the purpose of training deep models. Furthermore, software libraries such as Torch,

Theano and Caffe made fast prototyping, training and testing possible.

8

Hidden

layer 1

Hidden

layer 2

Input

layer

Output

layer

Figure 2.2: Neurons in adjacent layers are fully pairwise connected. Neurons pertaining

to the same layer do not share any connection whatsoever.

tween neurons. Neurons pertaining to the same layer do not share any connection

whatsoever, as is shown in Fig. 2.2.

Evaluation of samples consists in inserting input data and propagating the result

through each layer of the MLP continuously until last one, whose result will be the

net output. This procedure is called feed-forward operation. A second operation

is the so-called backward-propagation in which the gradient of the error function

calculated on the correct output and the predicted one is propagated back to the

beginning of the network in order to update its parameters and teach the network.

Those two procedures are interleaved leading the net to learn the proper parameters

and correctly predict the output.

The universal approximation theorem [15] states that given any desired continuous

function f(x) and some finite error ǫ > 0, there exists a neural network g(x) with

one hidden layer capable of representing such function with error upper bounded by

ǫ. That means that ∀x, | f(x) − g(x) |< ǫ. Simply put, a single layer network is

sufficient to represent any function with any desired degree of accuracy given that

the net is large enough.

Although seemingly powerful, in practice this statement is meaningless since there

is no guarantee that the training algorithm will learn that function, furthermore the

layer may become infeasibly large and may fail to generalize correctly. Generally,

the opposite approach is the best: deeper models reduce the number of required

10

units and reduce the generalization error as shown in [16]. Even though it has been

known for long that, in general, depth, regardless of width, does increase prediction

accuracy, not until very recently such approach was impractical. Only with the

computational capacity made available by cutting-edge GPUs, has the community

begun to speculate with such models.

2.2.4 Convolutional neural networks

The design of convolutional neural networks are based on the visual mechanism

of the brain, the visual cortex. Neuroscience has long been an active research field,

especially on the visual cortex, which corresponds to approximately 25% of the

human cortex.

The first model of circuits in the visual cortex comes from the research done

in cats’ cortex by Hubbel and Wiesel in [17]. They demonstrated that the visual

cortex is arranged retinotopically, that is, nearby cells in the cortex process nearby

regions of the visual field, which implies that information locality is preserved in the

processing stage. Moreover, cells are structured in a hierarchical manner so that

their activations progressively build up to more complex patterns.

One of the first attempts to imitate the visual cortex through code was Fukushima’s

Neocognitron [18]. It consisted of a layered architecture with several layers of local

receptive cells that processed small regions of the input followed by pooling opera-

tion2. This systematical structure was in accordance with what was known about

the visual cortex, just like Hubbel and Wiesel’s research had shown, locality was

preserved and hierarchically arranged.

After a long break, Yann LeCun takes upon the Neurocognitron’s design of 1980

and learns a similar architecture through back-propagation whose goal was to clas-

sify hand-written mail digits (Fig. 2.3). The LeNet-5 network [19] though still

small, employed convolutional layers (explained in convolutional in Section 2.2.5)

2The pooling operation basically performs a spatial down-sampling (Pooling in Section 2.2.5

further explains the pooling operation).

11

Figure 2.3: The LeNet-5 network consists of 5 stacked layers. The first layers are

composed of alternating convolution and pooling layers. The three last layers are fully-

connected and are similar to the traditional MLP model. Between each convolution-

subsampling stage, there are several feature maps which are mappings of the original

image. Source: [19]

and the modular structure of Fukushima’s work, just as modern convolutional neural

networks. CNN is the most widely used network in computer vision applications.

Instead of employing matrix multiplication in all of its layers as the mapping

function, convolutional networks use, in at least one of the layers, convolutions to

obtain the mapping.

The output of each stage and, consequently, input of the next one is a set of

feature maps. That is, the features extracted from all the locations of the input by

that layer. Naturally, the feature maps for the first layer would be the image itself.

Generally, counting the number of layers is not done by counting the number of layers

per se, but instead by counting the number of stages of the net, i.e. convolutional

layer, non-linearity layer, and pooling layer, for the early layers and fully-connected

for the later ones (the Section 2.2.5 explains all above mentioned layers).

2.2.5 Layers

There are several different types of layer one can use in a network architecture,

some of them have even been mentioned previously. In what follows, the most

important ones either in general or for this project will be succinctly explained.

12

Convolutional. Convolution is a mathematical concept widely used in the Signal

Processing domain. It can be described mathematically for one dimension as

y[n] = (x ∗ h)[n] =
∑

k

x[n− k]h[k] . (2.3)

While the two-dimensional version including the convolution of 2D images with 2D

kernels will follow

y[n,m] = (x ∗ h)[n,m] =
∑

k

∑

l

x[n− k,m− l]h[k, l] . (2.4)

In practice, a convolutional layer consists on sliding a kernel (or filter, both will be

used interchangeably) on all possible positions of the input and computing the value

of each of those positions by calculating the Hadamard product between the kernel

and the corresponding region of the input (Fig. 2.4). An important observation is

that besides the two spatial dimensions, there are N feature maps and so the kernel

actually is a three-dimensional block with depth equal to the number N of maps.

As stated in [7], “convolution leverages three important ideas that can help im-

prove a machine learning system: sparse interactions, parameter sharing and equiv-

ariant representations”. Those traits are inspired by biological systems as it was

discussed in Section 2.2.4.

Sparse connections means that each output neuron is only connected to a limited

number of input positions instead of the whole input data as in the MLP. Whilst

parameter sharing entails that the same parameters are used more than once in

the model, in the CNN context that amounts to employing the same kernel to

each position of the input. Consequently, a visual pattern which actives the filter

may appear at different locations of the input, hence this structure also leverages

translation invariance. Those concepts result in considerably smaller filters, fewer

parameters, less memory usage and faster models.

The kernel size which determines the receptive field of the neuron is a hyper-

parameter as well as the number of filters to use and their stride3. The number of

3Stride is the pixel-wise distance between two adjacent positions where the kernel is applied to.

13

Although it may seem irrelevant, many convolutional layers stacked together can

reduce the image to the point of uselessness or at least poor final system perfor-

mance due to the great loss in information. Padding the input image prior to the

convolution leads to undesirable boundary effect, but can guarantee that the spatial

size will remain the same. Sometimes it will be convenient to pad the input volume

with zeros around the border. If on each input border P pixels are padded (P = 1

for the padding shown in Fig.2.4), then the spatial size of the output is determined

by:

F =
W −K + 2P

S
+ 1 . (2.5)

Among the different types of padding, zero-padding which consists of attribut-

ing zero to the padded input pixels is the most common one in the deep learning

community.

Pooling. Pooling replaces the value of a small region with a statistic over that

region. As a result, it reduces the resolution of feature maps, increasing invariance

to small local translations and reducing sensitivity to distortions, both typically

within the local receptive field of the neuron. Therefore, it progressively decreases

the amount of parameters and compute in the net.

This approach is actually imposing a prior to the system by forcing the layer to

learn this invariance. If correct, it can significantly increase the efficiency of the

network. Anyhow, in most computer vision tasks that is the case.

The most common forms of pooling are max-pooling and average-pooling, the

former outputs the average of a rectangular region while the latter its maximum

value (Fig. 2.5). Normally, those regions do not overlap, the pooling filter and its

stride are forced to be equal. Moreover, the pooling operation acts independently

on each feature map.

Activation. Each neuron can be interpreted as a detector for a certain visual

pattern that will fire proportionally to its activation function output. This is a

point-wise nonlinear function applied to all neurons of the input volume. This

15

Table 2.1: Per layer breakdown of the VGG-16 network at the right and of the ResNet-20

(Section 2.3 explains the ResNet architecture). The fully-connected layers concentrate the

majority of the parameters of the net with astonishing 90% of the whole size. In effect,

removing the FC layers in favor of an approach such as the average-pooling layer which

does not introduce any parameters whatsoever can have a powerful effect in reducing the

network size.

layer number of parameters

conv3-64 x 2 38,720

conv3-128 x 2 221,440

conv3-256 x 3 1,475,328

conv3-512 x 3 5,899,776

conv3-512 x 3 7,079,424

fc1 102,764,544

fc2 16,781,312

fc3 4,097,000

TOTAL 138,357,544

layer number of parameters

conv7-64 x 1 9,408

conv3-64 x 2 147,456

conv3-128 x 2 516,096

conv3-256 x 2 2,064,384

conv3-512 x 2 8,257,536

(avg-pool-7) 0

fc 512,000

TOTAL 10,994,880

Let W be the weight matrix and x the input feature maps volume, then:

y = Wx . (2.6)

There is no sparse connection nor parameter sharing as in the convolution op-

eration. Hence, it concentrates the majority of the whole network’s parameters as

shown in Table 2.1. For that reason, the recent approach of using fully-connected

(FC) layers at the end of the net has been frequently replaced with other methods

such as average-pooling. [12].

Despite the difference between FC and CONV layers both compute dot products

and can as a consequence be converted from one form to the other. It suffices to set

the kernel size to be exactly equal to the size of the input volume which will have

a 1 × 1 × n output size, producing the same outcome as the equivalent FC layer.

The real advantage of this approach is being able to have larger inputs without any

further modifications to the net, giving the same result as a sliding window at the

18

input but with much lower computational cost since there is no recomputation of

overlapping pixels.

Batch normalization. Deep learning suffers from severe covariance shift, that

is, the distribution of the function’s domain changes along training, and this prob-

lem gets worse as the number of layers increases. Since the architecture’s design

is hierarchical, during training the input distribution of the layer L varies due to

parameter actualization of all previous L− 1 layers even if the training samples are

taken at random, thus forcing the layer to continuously adapt to the new distribu-

tion. This phenomenon, coined internal covariance shift, slows training and makes

parameter initialization critical to convergence.

Ioffe & Szegedy [20] argue that whitening the input to each layer is a first step

in fighting those problems, and, so, propose a new layer whose function is to nor-

malize independently each mini-batch4 feature by both its mean and variance, as

full whitening of each layer’s input is costly and not everywhere differentiable,

fully integrating it to the architecture. For a layer L with d-dimensional input

x = (x(1) . . . x(d)), the normalization is

x̂(k) =
x(k) − E[x(k)]
√

V ar[x(k)]
, (2.7)

where E[·] is the expected value operator and V ar[·] the variance operator.

However, this transformation limits the representational capacity of the layer.

Therefore, to avoid this issue the authors introduce a set of parameters γ(k) and β(k)

which scale and shift the normalized feature x(k) by the mapping

y(k) = γ(k)x̂(k) + β(k) (2.8)

that the model learns iteratively with all other parameters.

Whereas the normalization uses mini-batch statistics for efficient training; for in-

ference, it uses the population statistics instead, since the output should be predicted

deterministically. Algorithms 1 and 2 respectively present the Batch Normalization

4A mini-batch is a randomly sampled subset of the whole training set.

19

(BN) transform of an activation x over a mini-batch, and the procedure for train-

ing and later testing batch-normalized networks. In both algorithms, ǫ is a small

constant used to avoid division by zero and increase numerical stability.

Algorithm 1 Batch Normalizing Transform (BN)

Input: Values of x over a mini-batch B = x1...m;

Parameters to be learned γ,β

Output: yi = BNγ,β(xi)

µB ← 1
m

m
∑

i=1

xi (mini-batch mean)

σ2
B
← 1

m

m
∑

i=1

(xi − µB)
2 (mini-batch mean)

x̂i ← xi−µB√
σ2
B
+ǫ

(normalize)

yi ← γx̂i + β ≡ BNγ,β(xi) (scale and shift)

Batch normalization may be applied to whatever set of activations in the network

one wishes, but the authors in [20] argue it is more effective right after affine transfor-

mations, which covers both convolutional and fully-connected layers in feedforward

CNNs. Therefore, the operation

x = g(Wu+ b) (2.9)

with learnable parameters W and b, nonlinearity g and input u, becomes

x = g(BN(Wu)) , (2.10)

where BN stands for the Batch Normalization transform and the bias b has been

dropped because its effect is canceled by the mean subtraction and its role taken

by the shift parameter β in the transformation. In the specific case of convolu-

tional layers, normalization is further jointly applied over all spatial locations, and

the parameters γ and β are, consequently, learned per feature map instead of per

activation.

Batch Normalization allows the use of saturating nonlinearities and higher learn-

ing rates, diminishes the number of iterations needed for training (∼10×), and

(partially) regularizes the model, since training samples in the same mini-batch are

jointly seen.

20

Algorithm 2 Training a Batch-Normalized Network

Input: Network N with trainable parameters Θ;

subset of activations

Output: Batch-normalized network for inference N inf
BN

1: N tr
BN ← N (Training BN network)

2: for k = 1 . . . K do

3: Add transformation y(k) = BNγ(k),β(k)(x(k)) to N tr
BN (Alg.1))

4: Modify each layer in N tr
BN with input x(k) to take y(k) instead

5: end for

6: Train N tr
BN to optimize the parameters Θ ∪

{

γ(k), β(k)
}K

k=1

7: N inf
BN ← N tr

BN

8: for k = 1 . . . K do

For clarity, x ≡ x(k), γ ≡ γ(k), µB ≡ µ
(k)
B

9: Process multiple training mini-batches B, each of size m,

and average over them:

E[x]← EB[µB]

V ar[x]← m
m−1

EB[σ
2
B
]

10: In N inf
BN , replace the transform y = BNγ,β(x) with

y = γ√
V ar[x]+ǫ

x+ (β − γE[x]√
V ar[x]+ǫ

)

11: end for

Deconvolutional. This operation in spite of its name is not the inverse of the

convolution in the mathematical sense. However, the scientific community has not

yet agreed on its name, e.g. deconvolution, fractional-stride convolution, transposed

convolutional layer.

Actually, this operation still is a convolution but greatly differs in its motivation

and use, therefore a separate section is dedicated to it. Those filters are used to

implement learnable up-sampling within the network in an end-to-end fashion and

can even learn nonlinear up-sampling when conjugated with activation functions.

The 1/f -stride convolution is equivalent to an f factor up-sampling, so it may

be implementing by a reversed convolution, that is, by reversing the forward and

21

Strictly speaking, there is no expanded filter since that is not efficient. Instead,

we pair the kernel elements with non-adjacent positions of the input, which means,

that the modification relies solely on the operator itself. Hence, the same filter can

be applied with varying dilations.

As discussed in [22], the main application for this kind of operation is dense

prediction, since the larger receptive field allows to better integrate context while

the spatial resolution remains intact, as long as the stride is 1, which generally is

the case. In order to better understand the resolution preservation, consider two

stacked convolutional layers: the first with stride S > 1; and the second with stride

1 and filter values fij given by the position indexes i and j. Then, change the stride

of the first layer to one so its output is enlarged by S. Consequently, the filter of the

second layer sees a smaller region of the image and the result can no longer be the

same. Nonetheless, by dilating the kernel of the second convolution by this same

factor S

f ′

ij =

fi/S,j/S S divides both i and j;

0 otherwise,
(2.12)

the correspondence can be recovered for the filter once again sees the same pixels

as before (after the up-sampling, the distance between previously neighboring pix-

els became S, so setting the spacing between each tap to S necessarily makes the

results the same as before). Repeating this procedure for all down-sampling opera-

tions along the network (exponentially increasing the dilation at each replacement),

ensures the resolution stays the same throughout the net, whilst results are still

equivalent. However, maintaining the original size during the whole process might

become inviable in terms of memory requirements as model size increases, therefore

a compromise must be reached between down-sampling and later up-sampling, and

dilation, which will vary for each architecture and will be specified individually for

each case.

2.2.6 The learning process

The training phase of a neural network is the search for the optimal set of pa-

rameters that minimizes a cost function C(D,Z) defined on the desired output D

23

and the predicted one Z. The most common method for training is still the back-

propagation first proposed in the AI domain back in 1985. This way of computing

the gradient is explained below.

Let C(D, f(I, θ)) define the cost function between the desired output D for input I

and the output of the system for a given set of parameters θ. The learning problem

consists in finding the values of θ that minimize this cost function. In practice

the performance of the system on the training set is of little interest. Much more

relevant is its performance in the field, meaning the test set, to know whether or

not it generalizes to new data.

Let the function fk, which implements Xk = fk(θk, Xk−1), be the mapping of

the Kth layer that takes as input Xk−1 and outputs Xk, and θk the set of tunable

parameters for that function. If the partial derivatives of the cost function Cs with

respect toXk is known, than the partial derivatives of Cs with respect to θk andXk−1

can be computed by backward recurrence using the chain rule of differentiation:

∂Cs

∂θk
= ∂f

∂θ
(θk, Xk−1)

∂Cs

∂Xk

∂Cs

∂Xk−1
= ∂f

∂X
(θk, Xk−1)

∂Cs

∂Xk

(2.13)

Where ∂f
∂θ
(θk, Xk−1) is the Jacobian of f with respect to θ evaluated at the point

(θk, Xk−1) and
∂f
∂X

(θk, Xk−1) is the Jacobian of f with respect to X. The learnable

parameters θ in a deep learning architecture are, for the most part, the weights

W of the convolutional and FC layers, hence, from now on, we will use W and θ

interchangeably, following the common practice in literature.

When the above functions are applied in reverse order, from the last layer down to

the first (whose input is the sample Is), all the partial derivatives of the cost function

with respect to all the parameters can be computed. Furthermore, the value for the

local gradients can be calculated independently for each operation gate without it

being aware of the rest of the network.

24

Two main assumptions must be made in order to use the back-propagation algo-

rithm:

• The cost function C can be written as the average over the cost of each in-

dividual training sample since the algorithm computes the partial derivatives

separately for each sample;

• The cost function C can be written as a function of the NN’s output.

Generally, back-propagation is used with gradient descent or other first-order

iterative optimization method to iteratively update the parameters values:

Wk+1 = Wk − η∇C(Wk) (2.14)

Where η is an extremely important and sensitive hyper-parameter called learning

rate and ∇C(W) is the gradient of the objective function with respect to the weights

W at the kth iteration.

The surface of the cost function is typically highly complex with many local

minima. Therefore, there is no guarantee that the global minimum can be achieved

by the optimization since a first-order method is used. The local minimum found

depends on the (hyper-)parameter initialization.

The most common variations of the gradient descent algorithm are the stochastic

gradient descent (SGD), momentum SGD, adaptive gradient (Adagrad), root means

square propagation RMSProp, and adaptive moment estimation (Adam). They all

are succinctly commented below.

SGD. It is an alternative to regular gradient descent that evaluates the gradient

of the cost function for all the training samples in the set which can have up to hun-

dreds of thousands of samples. Stochastic gradient descent instead simply samples

a random subset of the whole training sample and analyzes one such mini-batch at a

time taking it as an estimate of the whole set. This approach leads to a much faster

algorithm with often better results due to the noise introduced. This algorithm is

25

extremely sensible to the learning rate value and should be set and monitored with

care.

Momentum SGD. This method is designed to accelerate convergence. It intro-

duces a new variable ν that takes into account the previous steps by accumulating an

exponentially decaying moving average of past gradients. The new variable, as the

name of the algorithm implies, can be seen as the velocity (or momentum assuming

unity mass in the physics equation momentum = mass×velocity) of the particle in

the parameter space and the negative gradient of the cost function the force applied

to it. In this context, the hyper-parameter µ of the moving average would be the

viscous drag of the medium and the responsible for decelerating the particle, oth-

erwise it might never come to rest. This method is most useful when dealing with

high curvature parameter space, small but consistent gradients, or noisy gradients.

ν = µν − η∇C(Wk)

Wk+1 = Wk + ν
(2.15)

Nesterov momentum. A variant of standard momentum SGD which essentially

attempts to add a correction factor by evaluating the gradient after the current

velocity is applied and not the converse. This version of momentum is the most

applied one though theoretically it does not improve the rate of convergence [7].

W̃k = Wk + ν

ν = µν − η∇C(Wk)

Wk+1 = Wk + ν

(2.16)

The previous learning algorithms manipulated the learning rate equally for all

parameters. The cost function may have different curvatures in different dimen-

sions causing sensitivity to vary through different directions. Therefore, it proves

beneficial to use distinct learning rates to update each parameter. The following ap-

proaches do so by adaptively tuning the rates. Moreover, the extra hyper-parameters

they add are well-behaved for a broader range of values than the raw learning rate.

Adagrad. This method scales the learning rate of each parameter individually

by a factor inversely proportional to the root mean square of all its past gradient

26

values. Consequently, parameters that have high gradients will have their update

rate reduced, whilst the opposite will happen for parameters with small gradients.

Nevertheless, Adagrad leads to monotonic learning rates too aggressive for deep

learning. Let r be the variable that caches the previous squared gradients, σ a

smoothing term to avoid division by zero and⊙ the element-wise Hadamard product:

r = r +∇C(Wk)⊙∇C(Wk)

Wk+1 = Wk −
η

δ +
√
r
⊙∇C(Wk)

(2.17)

RMSProp. This algorithm was first introduced in 2012 by Geoffrey Hinton in

a slide of his deep learning online course. It slightly modifies Adagrad through

the incorporation of an exponentially weighted moving average of the past squared

gradient values. As a consequence, the method avoids the monotonic decrease in

learning rates that causes learning to stop earlier and as a result performs better than

Adagrad in non-convex spaces. However, as the moving average filter is initialized

at zero, it has high variance at the first training iterations.

r = ρr + (1− ρ)(∇C(Wk)⊙∇C(Wk))

Wk+1 = Wk −
η

δ +
√
r
⊙∇C(Wk)

(2.18)

Adam. It adds yet some minor modifications on top of RMSProp, namely, it

uses the exponentially weighted moving average of the gradient instead of the raw

gradient values and adds correction factors 1/(1 − ρki), where ρki is the coefficient

ρi of the ith averaging filter raised to the kth power at iteration k, to the moving

averages which may have high bias at the beginning since they are initialized with

zero. This method is fairly robust to hyper-parameter setting and is currently the

preferred optimization algorithm in deep learning for image processing.

ν =
ρ1ν + (1− ρ1)∇C(Wk)

1− ρk1

r =
ρ2r + (1− ρ2)(∇C(Wk)⊙∇C(Wk))

1− ρk2

Wk+1 = Wk − η
ν

δ +
√
r

(2.19)

27

Figure 2.9: Comparison between regular plain nets (at the left) and its residual coun-

terparts (at the right) for multiples depths according to training error (dashed lines) and

testing error (bold lines). The error of plain-110 is higher than 60% and not displayed.

Source: [12]

2.3 Residual networks

Feed-forward convolutional nets suffer degradation beyond a certain depth, i.e. the

insertion of extra layers in the network causes the accuracy prediction to decrease

(Fig. 2.9). This deterioration, however, is not caused by overfitting the training

data since both the training and validation errors get greater as the number of

layers added increases.

In [12], the authors argue that this underfitting is unlikely to be caused by van-

ishing gradients either, given that this problem is present even when correct normal-

ization techniques are applied to the layers. They reason that given two identical

architectures, where one of them is made deeper by stacking more layers on top of

it, this deeper version should be at least as good as the other since the extra layers

would learn the identity mapping in the worst case scenario. However, experiments

show that current optimizers cannot achieve this constructed solution. They specu-

late that “the solvers might have difficulties in approximating identity mappings by

multiple nonlinear layers” [12].

The paper [12] then proposes adding skip connections to bypass a small number

of convolutional layers at a time. Thus, instead of learning the whole mapping, the

block learns a residual that is at the end summed with the block’s input by this skip

connection. These shortcuts have virtually no cost: they do not add neither extra

28

Figure 2.10: A residual block is formed by adding a skip connection that shortcuts a few

convolution layers. The convolution layers predict a residual that is added to the block’s

input volume. Source: [12]

parameters nor computational complexity.

More precisely, let x be the input to the first layer of residual block and the

desired underlying mapping to be learned H(x). Adding the skip connection forces

the stacked layers to fit the mapping F(x) := H(x)−x which is the residual function.

The authors hypothesize that it is easier to optimize the residual mapping F than

to optimize the original H.

When the depth of the feature maps of the input and output are different, the

additional dimensions must be matched before adding them together. The first

and simpler solution is to pad zeros to the shallower volume in order to match the

dimensions. The second involves doing a projection from one space to another using

1 × 1 convolutions whose weights can also be learned5, this approach increases the

number of parameters by
∑N

n=1 Fn ·Kn where Fn and Kn are the number of feature

maps at the input and output of the nth shortcut projection, and N is the total

number of shortcut projections in the net which is very low, generally inferior to a

dozen units.

51 × 1 convolutions may seem odd at first but one must remember that in CNNs there are F

stacked feature maps and a 1×1 convolution actually has a 1×1×F kernel and so this is equivalent

to associating the corresponding pixels of each of those F maps. Consequently, spatial information

is unaltered.

29

The output of a generic residual block can then be represented by the following

equation

y = F (x, {Wi}) +Wsx . (2.20)

where Wi are the input weights and Ws the shortcut projection weights.

The residual network (ResNet) model won first place in many categories of the

Imagenet 2015 challenge with a 152-layer net. Table 2.2 presents the results for this

architecture as well as some others. The ResNet studied in [12] has the VGG spirit,

it is a modular stack of blocks, each applying small 3 × 3 kernels in the convolu-

tional layers, except for the very first one whose larger size aims quickly reducing

the image size. Fig. 2.11 shows the end-to-end structure of a 34-layer residual net-

work, that preserves the same structure of the 152-layer winner, alongside its plain

counterpart and the VGG-19. However, it substitutes the fully-connected layers

by one simple average pooling, considerably reducing the number of parameters of

the net. Furthermore, apart from one pooling layer at the very beginning to aid in

rapidly reducing the input image size, the model has no other pooling layer, all the

down-sampling is done through convolutions of stride 2.

Residual Networks, or ResNets, are the default choice for convolutional networks.

Not only they are currently state-of-the-art, but also converge for a wider range of

hyper-parameters.

30

Table 2.2: Classification error rates (%, 10-crop testing) on ImageNet validation set.

Configuration A means zero-padding for increasing dimensions, B means that the model

only uses shortcut projections for increasing dimensions, and C that it uses projections

for all shortcuts. Top-1 err. measures the number of times the correct class was not the

most probable prediction while top-5 err the number of times the correct class was not

one of the 5 most probable classes. The use of projection for matching dimensions reduces

the error with almost no cost, however using projection in all skip connections increases

cost and entails almost no reduction. The configuration C is not worth its additional cost.

Source: [12]

model top-1 err. top-5 err.

VGG-16 28.07 9.33

GoogLeNet - 9.07

plain-34 28.54 10.02

ResNet-34 A 25.03 7.76

ResNet-34 B 24.52 7.46

ResNet-34 C 24.19 7.40

ResNet-50 B 22.85 6.71

ResNet-101 B 21.75 6.05

ResNet-152 B 21.43 5.71

31

Chapter 3

Related work

This chapter reviews the main works in literature that relates to the present one

either in nature or practice, namely, in anomaly detection in video or in deep learning

based image segmentation.

3.1 Video surveillance and Anomaly detection

Background subtraction is embedded in a wide range of image processing appli-

cations since it is frequently employed as one of the first steps in computer vision

frameworks. It is the process through which one distinguishes among the foreground

(FG) and background (BG) of a scene, that is, one identifies the background of a

scene and segment the anomalous objects from it without necessarily having prior

knowledge about those objects.

Video surveillance systems generally use static cameras. The kind of footage thus

obtained causes many challenges to properly model the background and, conse-

quently, detect the foreground. Some examples of these challenges are: illumination

changes, dynamic background and FG object occlusion. Hence, countless methods

sprouted since the 1990’s in the attempt to address those challenges.

Gaussian models are often used to model BG due to its robustness to noise, gradual

illumination changes and slowly moving background. The authors in [23] proposed

modeling each pixel with a Gaussian distribution based on its N last values in a

scheme called Running Gaussian Average. More recent real-time object tracking

33

applications, such as [24], use this framework to construct a background model and

determine the normality mode of a pixel as the region enclosed by a threshold K,

attributing the FG label to outliers.

However, when the scene contains many non-static object, the single Gaussian

assumption for the pixel intensity distribution will not hold. Then, one may model

the background as a Mixture of Gaussians (MoG), instead of only one, as proposed

by Stauffer and Grimson in [25]. The work presented in their paper compares

every new pixel intensity value to the existing Gaussians modeling it in order to

find a match and if none is found, the pixel model is recalculated. MoGs typically

allow dealing with illumination changes, low contrast, dynamic background, and

camouflage, among other others.

Mixture of Gaussians, nonetheless, has its shortcomings. It is still not very robust

to sudden global illumination changes, and may incorporate foreground objects into

the background model if the scene remains stationary for a long time causing misde-

tections and also ghost regions after the objects starts moving once again. Besides,

MoG’s parameters require careful tuning. Despite the drawbacks of the Gaussian

modeling approaches, they are widely deployed in research and practice, account-

ing for nearly 50% of all background subtractions used for Stationary Foreground

Object (SFO) detection [2].

Some methods do not model the BG through raw pixel values, but rather rely on

features extracted from the input image. Li et al. [26] characterize the background

by the most significant and frequent spectral, spatial, and temporal features, and use

the Bayes Theorem to determine the a posteriori probability of the pixel belonging

to the foreground.

The body of literature is rather scarce when dealing with non-stationary cam-

eras. Liu et al [27], for example, decomposes the scale range and wide scene of a

PTZ camera into different layers of overlapping partial scenes and performs frame

registration by feature descriptor matching of the input frame with the partial key-

frames of the hierarchical ensemble. Then, foreground objects are detected using

34

the corresponding key-frame local background models.

Moo Yi et al. [28] propose a system that runs in real-time on mobile devices.

They use dual-mode single variate Running Gaussian Average model with variable

learning rates to model each background pixel vicinity and apply sparse optical-

flow tracker along with homography to estimate camera motion between adjacent

frames and mix the neighboring BG models to reduce the errors arising from motion

compensation.

Notwithstanding, the well established techniques for fixed cameras such as Gaussian-

mixtures, and statistical approaches do not transfer properly to situations like those

present in the Video Database for Abandoned Objects (VDAO) introduced in [6]

(Section 4.3), i.e. heavily cluttered background in moving camera surveillance sys-

tems. Recent works, such as [29], handle those issues exploring the low-rank sim-

ilarities between the reference and target videos to detect abandoned or removed

objects. Specifically, the authors propose a framework where the reference video

is described by matched-filters spanning optimal sub-space representation and the

anomaly is detected by computing the normalized cross-correlation between the fil-

ter output when applied to the target frame and the expected value for such filter.

This approach, though only requiring very rough synchronization, demands finding

the optimal sub-space for each different reference video beforehand. The present

work, on the other hand, defines a framework that can be directly employed to new

reference/target pairs.

In order to construct the BG models, the previous works (with exception of [29]

that uses sub-space representation) rely either on raw pixel values, which are not as

robust as features, or hand-crafted features which are problematic as it may take

decades of effort from a whole body of researchers to reach a reasonable representa-

tion and performance gain (Section 2.2.1). This work sets itself apart from them as

it employs deep learning to directly learn those features.

Nevertheless, this is not without precedent. Indeed, in 2013, Maddalena and

Petrosino [30] proposed a 3D neural model based on a Self Organizing Map (SOM)

35

stride convolution (explained in Deconvolution in Section 2.2.5) at the end to

up-sample the feature map and recover original image size (Fig. 3.1). Hence, this

architecture dispenses with the need for the sliding window technique to construct

dense maps and the common but inefficient patch-wise training.

Whilst [5] employs a pre-trained CNN simply as a feature extractor for later

processing, Brahams and Van Droogenbroeck [1] use deep learning end-to-end to

propose a background subtraction method. They use the Lenet5 [19] to predict the

probability of a pixel being part of the FG given its vicinity in the image and the

correspondent BG model region as the inputs (Fig. 3.2). Individually sampling all

input pixels and their respective vicinity, therefore capturing the local context of

the pixel, allows pixel-wise classification of the input, but considerably increases the

computational cost of the network. Consider the input image to be of width W and

height H and that the net processes patches of size T one at a time, then W × H

evaluations are needed to construct the output map with each input pixel being

computed T × T times, that is, as many times as the size of the patch, instead of

only one. The present work is very similar in nature to [5], however, it explores the

advantages of fully convolutional networks to diminish the computational require-

ments of a deep learning foreground detection.

Figure 3.2: Deep background subtraction performed by a variant of the Lenet5 [19]

learned by patch-wise training to predict pixel-wise FG probability. Source: [1]

37

Chapter 4

Databases

This chapter presents the datasets used throughout the project, either di-

rectly (CDNet and VDAO) or indirectly (ImageNet). While the first two are video-

surveillance specific, the latter is a widely employed dataset for classification, detec-

tion and localization, and segmentation using Deep Convolutional Networks.

4.1 ImageNet

The colossal amount of data available in the present due to the arrival of digital era

demands rapidly improving methods to harness them. Motivated by this scenario,

scientists created the ImageNet [31] database to allow research in the computer

vision field to be done in a proper manner and also to allow a fair comparison

between similar methods.

ImageNet is one of the most comprehensive and diverse coverage of the image

world with 14,197,122 images (as of Jan/2017), providing classes of images in a

densely populated semantic hierarchy (Fig. 4.1 exemplifies the structure), where

the subcategories (synsets) are interlinked by different types of relation. The final

objective is to gather tens of millions of annotated images, around 1000 images per

synset.

The database offers images with different levels of complexity with variable ap-

pearances, positions, view points, poses, and also background clutter and occlusions,

each one of them quality-controlled and human-annotated [31]. The plethora of cat-

38

Table 4.1: Statistics of high level categories of the ImageNet dataset. Source:

http://www.image-net.org/about-stats

High level category # synsets Avg # images per synset Total # images

amphibian 94 591 56K

animal 3822 732 2799K

appliance 51 1164 59K

bird 856 949 812K

covering 946 819 774K

device 2385 675 1610K

fabric 262 690 181K

fish 566 494 280K

flower 462 735 339K

food 1495 670 1001K

fruit 309 607 188K

fungus 303 453 137K

furniture 187 1043 195K

geological formation 151 838 127K

invertebrate 728 573 417K

mammal 1138 821 934K

musical instrument 157 891 140K

plant 1666 600 999K

reptile 268 707 190K

sport 166 1207 200K

structure 1239 763 946K

tool 316 551 174K

tree 993 568 564K

utensil 86 912 78K

vegetable 176 764 135K

vehicle 481 778 374K

person 2035 468 952K

40

The dataset is divided in 11 different categories (Table 4.2), each with 4 to 6 video

sequences and representing a specific kind of challenge. Hence, CDNET enables

identification of the most suitable algorithms for a specific problem as well as the

most competent overall.

The videos are camera-captured from typical indoor and outdoor scenes with

spatial resolution varying from 320× 240 to 720× 576 pixels and frame length 1000

to 8000 frames. Besides, they have accurate pixel-level groundtruth segmentation

for either all or half the frames with 5 distinct classes:

• Static background pixels;

• Shadow pixels denoting hard and well-defined moving shadows (Fig.4.2(b));

• Non-ROI pixels prevents analyzing activities unrelated to the category con-

sidered;

• Unknown pixels that are half-occluded or corrupted by motion blur;

• Moving pixels from the region of interest.

The CDNET database plays a major role in this work as it is the main source

of task-specific data, allowing to learn foreground-specific features and validate the

efficacy of network architectures and other ideas, while the ImageNet serves the

purpose of laying out basic generic features that, otherwise, would need massive

amounts of data to learn from. The CDNET dataset is divided according to [1],

discarding PTZ and Intermittent background motion videos during training and

validation, so both results may be compared.

4.3 VDAO

The Video Database for Abandoned-Object Detection [6] radically differs from

all other publicly available databases as it presents a set of videos recorded from a

moving platform in a heavily cluttered industrial background, whilst all others (such

as CDNET) consist of static cameras and, hardly ever, PTZ cameras. The nonlinear

movement of the platform and the strong jitter render traditional approaches such

41

Table 4.2: CDNet database video categories with a brief description of each one.

Video category Description

Baseline mixture of mild typical challenges

Dynamic background scenes with strong (parasitic) background motion

Camera jitter videos captured by unstable cameras

Intermittent background motion scenarios known for causing “ghosting” artifacts

Shadows videos with varying degrees of shadow

Thermal videos captured by far-infrared cameras

Challenging weather outdoor videos in challenging winter conditions

Low frame-rate varying frame-rates between 0.17 fps and 1 fps

Night videos captured at night (difficult light conditions)

PTZ footage from pan-tilt-zoom camera

Air turbulence air turbulence caused by rising heat

as homography noneffective. However, correct time-space alignment is paramount if

one intends performing comparisons between target and reference frame. Further-

more, according to Cuevas et al. [2], is one of the only two databases specifically

designed for the evaluation of abandoned object detection algorithms.

Among its 8.2 hours and 66 videos, VDAO has 56 single object, 6 multiple ob-

jects of different colors, textures, shapes and sizes, as well as 4 clean reference videos

filmed from two different cameras with distinct light and color characteristics, but

same frame rate and resolution (examples of objects in Fig. 4.3). Moreover, mul-

tiple scenes exist where objects are partially or fully occluded and the scene casts

unwanted mirrored images due to shadows and reflexive surfaces. In order to as-

sess results, manually annotated bounding boxes are defined for each object in each

video of database.

Therefore, VDAO is one of the most difficult and realistic database publicly avail-

able, as far as our knowledge goes, for training change detection and motion seg-

mentation. Thus, its purpose in the present work is to challenge the proposed deep

learning architectures and test their robustness, inferring how well they may gener-

42

(a) Input frame (b) Groundtruth frame

(c) Input frame (d) Groundtruth frame

Figure 4.2: Two video frame samples (a,c) with associated manually-labeled groundtruth

(b,d), respectively. There are five different values for the groundtruth mask, they are:

static, shadow, non-ROI, unknown (pixels half-occluded or corrupted by motion blur),

and moving. However, this work, as [1], does not use all the 5 classes. Instead the static,

shadow, non-ROI, and unknown are grouped into non-moving-object category, simply

referred as background. Source: [35]

alize.

43

Chapter 5

Proposed convolutional network

5.1 The Torch framework

Torch7 [3] is the numeric computing framework used through the whole project to

develop and test the network models studied. Endorsed by major technology com-

panies such as Google and Facebook, it extends the light-weight scripting language

Lua at the same time that offers compiled and optimized backend APIs (Applica-

tion Programming Interface) (e.g. C, C++, CUDA, OpenMP), which renders the

process of development easier and more understandable while still being fast and

efficient.

5.2 The network architecture

5.2.1 Proposed changes

The studied networks are derivations either from Braham’s [1] implementation of

LeNet5 [19] or from ResNet [12] architectures made available by the Facebook AI

team [36].

The architecture proposed in [1] (Fig. 3.2) performs a binary classification of

a single pixel given a 27 × 27 image patch as input by passing it through two

convolutional stages (5 × 5 convolution kernels followed by non-overlapping 3 × 3

max-pooling) and two fully-connected layers. The classification step itself is done

by the activation of the last and only neuron in the second FC layer, which is a

46

sigmoid function that acts as a logistic regression and outputs the probability of the

pixel at the center of the patch being foreground. Hence, for the construction of the

full output map of the same size as the input, the system requires as many forward

passes as there are pixels in the input image. This design re-computes the input

data many times over, since at a stride of 1, each analyzed patch has a considerable

overlap with the previous one. In order to circumvent this issue and gain efficiency,

the present work uses the whole image at once as input. To achieve that, the first

modification is to replace the fully-connected layers by convolutional equivalents so

the network can process images of any size. However, this does not guarantee that

the output will have the same size as the original image, thus further adaptations

are required. Three main options were studied:

• Simple bilinear up-sampling of the output with factor equal to the number

of down-sampling operations done along the network, namely poolings and

convolutions with stride greater than 1 (shown in Fig. 5.1a);

• Replacement of common operations by their dilated counter-parts (explained

in Dilated operation of Section 2.2.5) to preserve resolution (depicted in Fig.

5.1b);

• Deconvolution (definition in item Deconvolutional of Section 2.2.5) operations

appended to the end of the network to recover the input size (represented in

Fig. 5.1c).

Reutilization of the ResNet architecture faces a similar problem. Besides, being

a model originally designed for image classification, prior to the last fully-connected

layer, an average pooling operation over the already spatially small feature map

transforms the N ×M × kFeatures tensor in a 1 × 1 × kFeatures vector, that is,

it completely removes all remaining spatial information. Although, such procedure

may work well for image classification as location does not matter, in our case of

image segmentation it is paramount. Were we trying to detect whether or not there

was an anomalous object present in the scene, instead of trying to localize and

segment it, then maybe such procedure would be of worth. Hence, we remove the

average pooling at the end and repeat the steps done in the previous architecture,

47

namely replace the fully-connected layer by its convolutional counterpart and adapt

the network to output a dense probability map by doing one of the options presented

before and adding a sigmoid at the end.

The reason why dilation may work is not as straightforward as why the other

two methods might. Consider two stacked convolutional layers: the first with stride

S > 1; and the second with stride 1 and filter values fij given by the position indexes

i and j. Then, change the stride of the first layer to one so its output is enlarged

by S. Consequently, the filter of the second layer sees a smaller region of the image

and the result can no longer be the same. Nonetheless, by dilating the kernel of the

second convolution by this same factor S

f ′

ij =

fi/S,j/S S divides both i and j;

0 otherwise,
(5.1)

the correspondence with the original setting can be recovered because once again the

filter combines the same pixels as before (after the up-sampling, the distance between

previously neighboring pixels became S, so setting the spacing between each filter

tap to S necessarily makes the results the same as before). Repeating this procedure

for all down-sampling operations along the network (exponentially increasing the

dilation at each replacement), ensures the resolution stays the same throughout the

net, whilst results are still equivalent. However, maintaining the original size during

the whole process might become inviable in terms of memory requirements as model

size increases, therefore a compromise must be reached between down-sampling and

later up-sampling, and dilation, which will vary for each architecture and will be

specified individually for each case.

5.3 Pre-processing of input video

As explained in Section 4.2, a background model must be extracted from each

video in the dataset. Therefore, similarly to [1], to create such model the first 150

frames of each video are passed through a median filter.

The database has a file that defines the ROI (Region Of Interest) of the video,

which often is a small subset of the image area. So all regions outside the ROI of

48

Input
Stride 1

SpatialZeroPadding(7, 7, 7, 7)
Stride 1

SpatialConvolution(2→6, 5×5, 1,1, 2,2)
Stride 1

ReLU
Stride 1

SpatialDilatedMaxPooling(3×3, 2,2, 1,1)
Stride 2

SpatialConvolution(6→16, 5×5, 1,1, 2,2)
Stride 2

ReLU
Stride 2

SpatialDilatedMaxPooling(3×3, 2,2, 1,1)
Stride 4

SpatialConvolution(16→120, 3×3)
Stride 4

ReLU
Stride 4

SpatialConvolution(120 → 1, 1×1)
Stride 4

SpatialUpSamplingBilinear(4)
Stride 1

Sigmoid
Stride 1

(a) Bilinear up-sampling only version

Input
Stride 1

SpatialZeroPadding(21, 21, 21, 21)
Stride 1

SpatialConvolution(2→6, 5×5)
Stride 1

ReLU
Stride 1

SpatialDilatedMaxPooling(3×3, 1,1, 1,1)
Stride 1

SpatialDilatedConvolution(6→16, 5×5, 3,3)
Stride 1

ReLU
Stride 1

SpatialDilatedMaxPooling(3×3, 1,1, 3,3)
Stride 1

SpatialDilatedConvolution(16→120, 3×3, 9,9)
Stride 1

ReLU
Stride 1

SpatialConvolution(120→1, 1×1)
Stride 1

Sigmoid
Stride 1

(b) Dilated version

Figure 5.1: Different possible adaptation schemes in order to render possible the reuse

of pre-trained networks. Each node of the directed graphs represent an operation in

the network. The → symbol indicates a mapping from a feature map depth to another,

n × n the size of the operation kernel and the occasional remaining pairs of parameters

are the stride and padding (both vertical and horizontal). On the left, a simple bilinear

interpolation at the end to up-sample the down-sized image back to its original resolution.

On the right, the down-sampling operations (i.e. SpatialMaxPooling) are replaced by

their dense version, so instead of having stride of 3, they have stride of 1, this modification

requires the adaption of all subsequent spatial operations so that they remain equivalent.

49

Input
Stride 1

SpatialConvolution(2→6, 5×5, 1,1, 2,2)
Stride 1

ReLU
Stride 1

SpatialMaxPooling(3×3, 3,3)
Stride 3

SpatialConvolution(6→16, 5×5, 1,1, 2,2)
Stride 3

ReLU
Stride 3

SpatialMaxPooling(3×3, 3,3)
Stride 9

SpatialConvolution(16→120, 3×3, 1,1, 1,1)
Stride 9

ReLU
Stride 9

SpatialFullConvolution(120→16, 3×3, 1,1, 1,1)
Stride 9

ReLU
Storage id: 7

SpatialMaxUnpooling(3×3, 3,3)
Stride 3

SpatialFullConvolution(16→6, 5×5, 1,1, 2,2)
Stride 3

ReLU
Stride 3

SpatialMaxUnpooling(3×3, 3,3)
Stride 1

SpatialFullConvolution(6→6, 5×5, 1,1, 2,2)
Stride 1

ReLU
Stride 1

SpatialConvolution(6→1, 1×1)
Stride 1

Sigmoid
Stride 1

(c) Deconvolutional version

Figure 5.1: (Cont.) The deconvolutional version adds, at the end of the original network

[1], a sequence of unpooling (inverse of pooling, that is, up-sampling of the same factor

and with no interpolation), deconvolution (named SpatialFullConvolution in the Torch

framework) and activation function operations, all stacked forming a deconvolutional stage.

At the very end, a last convolutional layer acts as a fully-connected taking from 6 features

maps, instead of 120 as the other structures, to only 1.

50

both the newly created background model and the input image are set to zero. Fur-

thermore, this considers only two classes (among five of the CDNET), FG and BG,

thus all other intermediate classes are also set to zero, that is, they are incorporated

into the background.

Next, input and background model are converted to their respective grayscale

representation and latter both merged together as two distinct channels of one sole

image. That is the input of the network.

As frames may vary from 320× 240 to 720× 576 pixels, images are scaled down

to 256× 192 pixels to ease training time.

Note that there is no color-normalization and the sole data augmentation tech-

nique is the horizontal flip with probability 0.5 of the input image.

5.4 Training phase

Just as it was explained in Section 2.2.6 of the theoretical foundations chapter,

the learning process is divided in two distinct phases: learning (or training), where

parameter actualization occurs; and validation, where the model is tested (or vali-

dated) in a separate disjoint set of data. The division of those sets is the same as

in [1]. Particularly, not all videos are considered, only those shown in Table 5.1.

Initially, we divided videos in two halves, the first for training and the second for

validation, exactly as Braham et al.. Later, however, the same videos were divided in

a more usual 70%/30% scheme in order to gather a more representative training set,

since there is not much data available. Further modifications include suppressing

all training frames that do not have any foreground pixel in an attempt to diminish

the class imbalance problem, which reduces it from 21, 773 frames to 10, 441, whilst

keeping the validation intact so as to keep it representative of reality. At the end,

there are 10, 441 images for training and 9, 330 for validation, that corresponds to

approximately 50% for each just as the original setting.

The cost function to be optimized is the binary cross-entropy between the esti-

mated class probability qi and the correct distribution pi, which would be 1 on the

51

Table 5.1: CDNET videos used during training and validation.

Category Considered videos

Baseline Highway Pedestrians

Camera jitter Boulevard Traffic

Dynamic background Boats Fall

Shadow Bungalows People in shade

Thermal Park

Bad weather Blizzard Skating Snow fall

Low framerate Tram crossroad Turnpike

Night videos All 6 videos

Turbulence Turbulence 3

correct class and 0 on the other. The mathematical equation is as follows:

H(q, p) = − 1

n

∑

i

(pi ∗ log(qi) + (1− pi) ∗ log(1− qi)) . (5.2)

The cross-entropy can be written in terms of the entropy H(p) and the Kullback-

Leibler divergence DKL(p||q) as H(p, q) = H(p) + DKL(p||q). Since the entropy

of the Dirac delta function p is null, this is also equivalent to minimizing the KL

divergence between the two distributions (a measure of distance), that is, minimize

the distance between them.

The objective is the average over the output of all training images in the mini-

batch and over all pixels of each image, n values in total. This is a major point

of distinction between the training done in [1] and in here, the former samples a

few dozens patches and calculates the average of the cost over them, whereas here

the averaging is over whole images, which equates to more than 100,000 patches at

the same time. This difference is inevitable from how we approach the problem: to

densely solve the foreground segmentation task. In order to address class imbalance

in this setting, different weights for each class could have been chosen, but it was

decided not to, keeping the simplicity of the formula.

52

The final cost function is achieved by combining the cross-entropy term of the

previous equation with a regularization penalty R(θ). To this purpose, we use the L2

norm, that is, the element-wise quadratic sum of all parameters, which discourages

large values. Let s be the training sample and λ a constant scalar, then the final

form of the objective is

C(s, p) = H(q, p) + λR(θ) . (5.3)

However, to assess the real-world quality of the model, the F1-score of the de-

tection is used as a proxy for the cost function for it measures the efficiency of the

network’s predictions in a more palpable manner and is what really matters for a

anomaly detection system. The F1-score is defined as the harmonic mean of the

precision and the recall:

F1 =
precision× recall

precision+ recall
. (5.4)

Which are defined as:

Precision =
2× true positives

true positives+ false positives
, (5.5)

Recall =
true positives

true positives+ false negatives
. (5.6)

Or, equivalently:

F1 =
2× true positives

2× true positives+ false positives+ false negatives
. (5.7)

Additionally, to minimize the cost function, the optimizer of choice is the Adam

algorithm (Section 2.2.6 explains this as well as other solvers) with its default values,

which are ρ1 = 0.9 and ρ2 = 0.999. Besides, all models run for 60 epochs with a

mini-batch size of 16 with initial learning rate and weight decay hyper-parameters

of, respectively, 0.01 and 2e−4, where the latter value is within the customary range

of ∼1e−4, but is applied to all parameters (i.e. weights and biases), which is not so

common. The learning rate decay schedule, given by

LRt = LRinit(1− decay)⌊ t−1
interval

⌋ , (5.8)

53

5.4.1 Full-training

Fully training a model consists of building a model from scratch as opposed to

fine tuning, that is, parameters are randomly initialized. Generally, initialization

follows either the Xavier [37] or the He initialization [38] (both zero-centered gaussian

distributions with variance inversely proportional to kernel size × number of output

feature maps).

Brahams et al. [1] trained their model in this fashion. However, since it is a

Lenet5 and they use 100 27× 27 patches per iteration for 10,000 iteration, training

is extremely fast taking only a few dozen minutes to run. The situation is quite

different for other cases and requiring up to a full day of training is considered to

be fast.

In the present work, evaluated architectures are trained from ground and com-

pared. This type of training is given more emphasis, as it is better explained in

the next subsection, because the input for our models is completely different from

the commonly used RGB image. Therefore, we do not rely on previous networks to

initialize ours.

5.4.2 Fine-tuning

In fine-tuning, the starting point of the training phase, instead of being random

parameter values, are the values achieved by a network previously trained, that is,

the parameters of the new model are initialized to those pre-trained values. This is

a very frequent practice in the deep learning community as parameters learned are

generic (up to a certain point): the lower the layer, the more generic its parameters,

conversely, the higher the layer, the more task-specific it is [39]; and training models

from scratch requires lots of data and lots of time (in the order of weeks). Generally,

models are first trained on the large ILSVRC dataset (Section 4.1) and then trained

on the task-specific set [21, 32, 33].

The main problem with this approach for the case at hand is that all publicly

available pre-trained model take as input an RGB (Red Green Blue) image, but

55

Input

SpatialConvolution(2 → 3, 1×1, 1,1, 0,0)

SpatialBatchNormalization (4D) (3)

ReLU

Whole pre-trained network

(a) Adaptation by projection

Input

SpatialConvolution(2 → 64, 7×7, 2,2, 3,3)

SpatialBatchNormalization (4D) (64)

ReLU

Rest of the pre-trained network

(b) Adaptation by direct substitution

Figure 5.3: Originally, the pre-trained networks take 3-channel (RGB) images as input,

but since the developed architectures take only 2-channel images, some kind of adaptation

is necessary to interface the new type of entry with the old network model. On the

left, the adaptation is achieved by removing the first stage (convolutional layer, batch

normalization and activation function) and replacing it by a new one, whose parameters

are randomly initialized and take as input 2-channel images and outputs the same number

of features maps as the original. On the right, instead of removing, we add a new stage

at the beginning, also randomly initialized, responsible for projecting the 2-channel input

to the 3-channel space expected by the pre-trained model, thus there is no need to delete

anything and the previous network can be completely reused.

our input is a 2-channel image, where each channel is the grayscale of another

image. Therefore, both inputs are essentially very different and what has been

formerly learned may not transfer properly. At any rate, an adjustment must be

made since the first pre-trained convolutional layer expects a 3-channel image, not

2. We consider two options:

• Add a 1 × 1 convolution (and a batch normalization) before all else so as to

project the 2-channel image into a 3-channel space, integrally preserving all

pre-trained layers (Fig. 5.3a);

• Remove the first convolutional layer and the corresponding batch normaliza-

tion layer and replace them by new randomly initialized ones (Fig. 5.3b).

56

Nevertheless, it may not be as simple as that for all subsequent layers are built

upon the first and changing it implies altering the parameters of the whole model,

possibly canceling the positive effects of fine-tuning itself, throwing the process back

to full-training again.

5.5 Post-processing of network output

The last layer of the network being a sigmoid, its output is something like a

probability map for the pixels of the input. Nonetheless, the detection system

should deliver a binary decision, whether there is or there is not a foreground object

at that position. Thus, a simple global threshold at the end binarizes the image

so it can be compared with the corresponding groundtruth and metrics such as the

F1-score calculated. The threshold value during training is set to 0.5 for the sake of

simplicity, though the optimum value may very well be lower as the class balance is

skewed towards negative examples and almost nothing is done to revert this issue

(selection of foreground-present only frames for the training set as discussed at the

beginning of Section 5.4), what leads to the classifier naturally being biased towards

the negative class. Consequently, imposing a low threshold value would translate

to being more acceptant of what should be considered FG, counter-weighting the

original problem. Although we fix this value during training, it can be tuned after

the network converges so that the F1-score achieves maximal result.

Besides global thresholding, other more sophisticated methods may be employed

to adaptively threshold the output. However, that is not the primary focus of this

work.

57

Chapter 6

Results

This chapter presents and examines the results obtained throughout this work.

First of all, we present the results obtained by our implementation of the original

architecture proposed in [1]. Next, the chapter investigates the outcomes of the

modifications suggested in Chapter 5.

6.1 Original setting

Firstly, we tried to reproduced the results of [1], which, originally, motivated the

present research. Therefore, we set all hyper-parameters to be exactly as described in

[1]: not only the learning rate (0.001), mini-batch size (100) and number of iterations

(10000, roughly 65 epochs) are the same, but also the database organization (50% for

training and 50% for validation, using all frames), the parameters initialization (bias

equal to 0.1 and weight values randomly drawn from normal distribution N (0, 0.01)

truncated at 0.2) and the optimizer algorithm (RMSProp). Furthermore, we recover

the original patch-wise architecture by randomly sorting a 27×27 patch out of each

image in the mini-batch. However, as Braham & Droogenbroeck did not specify the

values employed neither for the the solver’s hyper-parameter ρ (brief explanation

in item RMSProp of Section 2.2.6), nor for the regularization penalty λ (refer to

equation 5.3 in Section 5.4), we experiment with λ = 2e−4, the same value of all

other networks, and λ = 0 to assess the impact of regularization, as well as we vary

ρ among some common values as summarized in Table 6.1.

58

Table 6.1: Summary of hyper-parameter ρ values used for the RMSProp optimizer algo-

rithm. Not all configurations curves are depicted in Fig. 6.1 and Fig. 6.2, only the more

relevant ones (meaning, the ones that achieved better results up until epoch 65).

RMSProp ρ 0.6 0.7 0.8 0.9 0.99 0.999 0.9999 0.99999

Unfortunately, we could not achieve the same F1-score average of 0.9046 as re-

ported in [1], instead, our best model could only attain 0.793 with the configuration:

ρ = 0.9 and λ = 0 (Fig. 6.1). We attribute this 10% gap to the fine-tuning of both

unknown hyper-parameters λ and ρ, as well as the down-sampling of all dataset

images to 256 pixels × 192 pixels we perform in the pre-processing stage. Motivated

by this discrepancy and by the observation that the 70%/30% database division

with the filtering of empty groundtruth frames in the training set gives slightly bet-

ter results, we repeated the tests for all previous settings with this other dataset

repartition and the results are shown in Fig. 6.2. Nevertheless the results remain far

below the original paper [1]. Moreover, it led to even more deceiving performances

with lower F1-score average across the values of ρ and higher validation losses.

Additionally, it is strikingly remarkable that, in virtually all cases, the models’

F1-scores oscillate considerably between epochs and the loss stays over λ = 2e−2
throughout the epochs (which is not the case for the other architectures we inves-

tigate and discuss in the remaining sections of this chapter). This phenomenon is

rather disturbing because it indicates that the network may not have really learned

to segment the foreground, but rather the algorithm of optimization might have

stumbled upon a poor local minima and cannot quite settle in this region of the

hyper-space as there is no learning rate decay, only the smoothening effect of the

per-weight exponential moving average filter of RMSProp acts towards this purpose.

Hence, the model may possibly not generalize well for other images.

6.2 Modifications to the LeNet5 architecture

Secondly, we studied the adaptations of Chapter 5 in the patch-wise segmentation

network of Section 6.1 in order to transform it into an image-wise system. Extending

59

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Epoch

F1-Score

ρ

0.8
0.9
0.99
0.999

1 10 20 30 40 50 60

Epoch

F1-Score

ρ

0.8
0.9
0.99
0.999

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Epoch

Validation Loss

ρ

0.8
0.9
0.99
0.999

(a) Regularization λ = 2e−4

1 10 20 30 40 50 60

Epoch

Validation Loss

ρ

0.8
0.9
0.99
0.999

(b) Regularization λ = 0.0

Figure 6.1: Performance curves of the original deep background subtraction architecture

[1] for different RMSProp hyper-parameter ρ values and two distinct regularization λ.

Train/Val split followed the 50%/50% approach. Employing regularization has a stabiliz-

ing effect on the performance curves, though both cases are noisy with F1-Score variations

of up to 10% even on the last epochs. The highest achieved F1-score value 0.793, using

ρ = 0.9 and λ = 0, is still far from the 0.9046 reported by [1]. We attribute this discrep-

ancy to fine-tuning of both λ and ρ, along with the evaluation on full-resolution images of

the validation set, instead of their down-sampled versions (∼2× on each dimension).

60

1 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

F1-Score

ρ

0.8
0.9
0.99
0.999

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Epoch

Validation Loss

ρ

0.8
0.9
0.99
0.999

Figure 6.2: The same curves as Fig. 6.1, but the dataset partition follows the 70%/30%

distribution with the training filtering scheme, and we only analyze the λ = 2e−4 case as

it is was more stable. These configurations are inferior to the previous ones, which rely

on the 50%/50% split: the F1-score is lower on average and the validation loss remains

higher.

[1] is the most straightforward approach, the net is small and simple, and training

is fast. We train all models until the 60th epoch with a mini-batch size of 16 (hyper-

parameter configurations in Section 5.4) using three different modifications:

• Bilinear up-sampling of the output back to the original image resolution (Fig.

5.1a);

• Deconvolution operations at the end of the network to recover the input size

(Fig. 5.1c);

• Dilated equivalents of the operations done along the network to preserve res-

olution (depicted in Fig. 5.1b).

We start with bilinear up-sampling of the final feature map (Fig. 5.1a). The

architecture performs two pooling operations, each one down-sampling every spatial

dimension of the image by a factor of 2, rather than of 3 as in the original network;

the basic idea of the overlapping pooling regions is to avoid loss of valuable spatial

information. Hence, the 4× interpolation at the end recovers the original input size.

61

Besides those modifications, we also inspect the effectiveness of batch normalization

(homonym item in Section 2.2.5) in this scenario. Thus we train both with and

without BN as depicted in Fig. 6.3; we observe that the BN version is consistently

better throughout training, though validation values fluctuate more, specially on

the first half. Albeit the 0.795 result in Fig. 5.1a is similar to the single best point

in the original architecture’s training (0.792), its evolution is greatly steadier, what

reinforces confidence in effective learning. Moreover, the curves’ trend indicates

that we could further improve performance, even if slightly, by training longer.

Interestingly, the validation loss is higher than the training loss, which is highly

uncommon; however this behavior is expected and is product of the unusual database

pre-processing, more precisely, the removal of training frames with no FG pixel. This

causes the training set to be harder than the validation set as the FG pixels (true

positives) are harder to correctly predict than the BG ones (true negatives). This

is not apparent from the F1-score because this metric takes into consideration both

true positive and true negative rates, whereas the loss only takes into account the

true positives.

Next, we proceed to deconvolutional architectures (Fig. 5.1c), either with linear

or nonlinear deconvolution operations (e.g. either with nonlinear ReLU activation

function in-between deconvolutional layers or not), each also further examined with

and wthout batch normalization. Deconvolutions are powerful as they give the model

the chance to learn the proper up-sampling algorithm, specially the nonlinear ver-

sion. Nonetheless, they are complicated functions to learn, specially the nonlinear

version; indeed, Noh et al. [32] state that “although batch normalization helps es-

cape local optima, the space of semantic segmentation is still very large compared to

the number of training examples and the benefit to use a deconvolution network for

instance-wise segmentation would be canceled”, and evade this obstacle by employ-

ing a two-stage training method. In these experiments, we verify that the networks

without batch normalization cannot learn the desired mapping: losses remain high

and F1-scores low for both sets, besides overtraining is also noticeable. Curiously,

the presence of nonlinear activation functions doesn’t seem to alter performance

significantly, while the linear version with BN achieved an F1-score of 0.848, the

nonlinear-with-BN one attained 0.830; our hypothesis is that this difference arises

62

1 10 20 30 40 50 60

0.30

0.40

0.50

0.60

0.70

0.80

Epoch

F1-Score

without BN
with BN

1 10 20 30 40 50 60

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Epoch

Loss

without BN
with BN

Figure 6.3: F1-score and loss curves for the bilinear up-sampling version of [1] with and

without batch normalization (in blue and in red, respectively). Values for both training

(dashed lines) and validation (solid lines) are shown. The BN version is consistently better,

though it does not reduce the train/val gap. It is also worth noting that the odd behavior

of lower-than-training validation loss comes from the unusual dataset split: training set

has higher loss because all of its images contain FG pixels, which are harder for the model

to correctly classify (true positives), whilst for validation all frames are kept, therefore

containing many more BG pixels, which have a higher classification rate (true negatives).

63

from arguments in [32] mentioned above.

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

linear
linear+BN
non-lin

non-lin+BN

1 10 20 30 40 50 60

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Epoch

Loss

linear
linear+BN
non-lin

non-lin+BN

Figure 6.4: F1-score and loss curves for the deconvolutional linear and nonlinear versions

of [1] with and without batch normalization. Values for both training (dashed lines) and

validation (solid lines) are shown. The versions without batch normalization completely

fail to learn the segmentation task, while their counterparts succeed and achieve similar

results: 0.848 F1-score for the linear one and 0.830 for the nonlinear. We hypothesize

nonlinear deconvolutions are harder to learn and need more complex training schemes to

benefit of their full potential [32].

The exciting result of the batch-normalized nonlinear version motivated us to

further train this model 40 more epochs, that is up to 100, so as to probe how farther

it could go (Fig. 6.5). Performance is indeed better (0.849), but only marginally

(0.001), since the curve basically saturates at 60 epochs. In short, the extended

training brings no practical benefit for the model at hand.

Yet another problem with deconvolutions is the checkerboard effect they cause

when kernel size is not multiple of the stride, which cause uneven overlaps. Although

the network theoretically could learn to compensate it and output a balanced map,

in reality not only it struggles to avoid the checkerboard patterns, but also models

with even overlap (kernel size divisible by stride) frequently cause similar artifacts.

Aiming to minimize this issue we only use 1-strided deconvolutions, which are guar-

anteed to generate even overlaps only, however this effect is still visible even for our

64

1 10 20 30 40 50 60 70 80 90 100

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Epoch

F
1-
S
co
re

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L
os
s

Figure 6.5: F1-score and loss curves for the best deconvolutional model, linear deconvo-

lution with batch normalization. Values for both training (dashed lines) and validation

(solid lines) are shown. Further training does not bring any practical benefit for the model

since the curve basically saturates at 60 epochs.

best architecture, the non-linear deconvolutional net with batch normalization, as

exemplifies Fig. 6.6.

At last, we try the dilated variation (Fig. 5.1b), where all poolings have stride

modified to 1 and after each all subsequent operation are dilated by 3 (i.e. after two

poolings, operations are dilated by a factor of 9) so as to preserve equivalence with

the original model. As all other models, the BN version attains a score approximately

5% higher, though both F1-score and loss fluctuates considerably more on the first

half of training, scoring an F1-measure of 0.823 (Fig. 6.7). This value, however, does

not surpass the 0.848 of the deconvolutional linear BN architecture. We speculate

that the small size of the architecture contributes for the superior performance of

the deconvolutional network and as the model deepens the deconvolutional approach

deals with an increasingly harder task. Fig.6.14 shows examples of segmentation

results from four different CDNET videos using the best LeNet variation of each

adaption scheme.

65

Figure 6.6: Visible checkerboard patterns in the output image of the best decon-

volutional model, the linear deconvolutional net with batch normalization. The

deconvolution fails to learn a proper function, which generates this effect even when

stride and kernel size are properly chosen.

1 10 20 30 40 50 60

0.45

0.55

0.65

0.75

0.85

0.95

Epoch

F1-Score

without BN
with BN

1 10 20 30 40 50 60

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Epoch

Loss

without BN
with BN

Figure 6.7: F1-score and loss curves for the dilated version of [1] both with and without

batch normalization. Values for both training (dashed lines) and validation (solid lines)

are shown. The batch normalized model is much noisier, but achieves better performance

from the second half of training, ending with a 0.848 validation F1-score.

66

6.3 Modifications to the ResNet architecture

Residual networks exhibit interesting characteristics [40]: they often perform bet-

ter than shallower models and at the same time have a clear and simple structure.

These components motivated us to experiment with residual networks instead of the

more traditional LeNet5-based models described so far. We repeat all previous steps,

that is, we implement and evaluate the same structures of up-sampling, deconvolu-

tion, and dilation, to convert the architecture into one proper for FG segmentation.

The ResNets in [12] presents a greater degree of hyper-parameter setting, namely the

size of the model and even the organization of layers, when compared to the LeNet5.

Basing ourselves on the FAIR implementation [36], we use the networks designed

for the ILSVRC challenge, which deal with 224×224 pixel-images, and those for the

CIFAR-10 and CIFAR-100 datasets, which have 32×32 pixel-images as input, since

our task is on one side akin to that of the ILSVRC challenge, large high-resolution

entry images, and on the other similar to the CIFAR databases, image patches and

local context as backbone. Besides the two different base designs, we experiment

with three different model sizes for each: 34, 50, 101 (ILSVRC) and 32, 56, 110

(CIFAR).

The curves in Fig. 6.8 show that all ILSVRC-based models have similar results,

though we note that the smaller the model, the less its metrics fluctuate. Moreover,

no matter the depth, they all perform worse than the LeNet5 with up-sampling of

Section 6.2. We suppose the reason for this phenomenon is the substantial loss of

spatial information due to the many pooling operations that down-sample the image

by a factor of 32, whereas the LeNet5 variation reduces the input by only four times.

The fact that the sole CIFAR-derived model with 34 layers achieves the best score

so far (0.858) reinforces the hypothesis of too strong down-sampling and consequent

loss of local context of the ILSVRC-derived networks. Analogously to the action

taken with the best deconvolutional net, we proceed to extend the training of the

outstanding model up to 100 epochs and verify a 0.88% gain in performance (Fig.

6.9), attaining a final F1-score of 0.867. Once again the model converges shortly

after the 60 epochs mark.

67

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Depth
101
50
34
32

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Depth
101
50
34
32

Figure 6.8: F1-score and loss curves for the bilinear up-sampling residual networks. Values

for both training (dashed lines) and validation (solid lines) are shown. All ILSVRC-

derived nets (depths 34, 50, and 101) perform similarly and significantly worse than their

LeNet5 equivalent, we hypothesize that the 32 times spatial down-sampling causes too

much spatial information to be lost. Besides, depth does not aid in getting better models,

the deeper the model, the noisier its metrics. Clearly, the best performing architecture is

the 32-layer CIFAR-based, which achieves a F1-score of 0.858 and only down-samples its

input by a factor of 4, like the up-sampling LeNet5 version.

Next, we evaluate segmentation by deconvolutional reconstruction with the ILSVRC-

based models (Fig. 6.10a) and (Fig. 6.10b). Just as the upsampling-case, results are

globally similar and lean favorably towards the shallower versions (F1-score 2∼3%
higher). Unexpectedly, however, the nonlinear model (F1-score = 0.842) has a 1%

edge over the linear deconvolutional case (F1-score = 0.832) for the ILSVRC net-

works. As stated before, the CIFAR networks, having higher resolution, achieve bet-

ter performance on average, albeit only slightly: 0.849 for the linear deconvolutional

case and 0.841 for the nonlinear one. Thus, we may deduce that the deconvolution

operations accomplish reasonable decoding of the feature representations in spite of

great spatial information loss (32 times in the ILSVRC-derived models).

At last, we employ the dilation technique. The CIFAR networks have already

little down-sampling (four times), hence we only dilate the second (out of two) max-

pooling, consequently obtaining an output map two times smaller than the input.

68

1 10 20 30 40 50 60 70 80 90 100

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Epoch

F
1-
S
co
re

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L
os
s

Figure 6.9: F1-score and loss curves for the best up-sampling ResNet model, the 32-

layer CIFAR-derived. Values for both training (dashed lines) and validation (solid lines)

are shown. The network achieves an F1-score of 0.867. Once again the model converges

shortly after the 60 epochs mark.

On the other hand, the ILSVRC nets operate five sub-sampling operations and have,

at their end, segmentation results reduced by 32 times, thus, in this case, we dilate

the networks twice, obtaining instead a resolution eight times smaller than the input.

The 56-layer and the 110-layer models of Fig. 6.11b were trained with mini-batch

sizes of 8 and 4, respectively, instead of the default 16 because those models were

too large to fit the 8GB GPU memory available. which implies they were trained

for many more iterations.

The ILSVRC-derived nets converge to similar values, even though the 34-layer one

net attains an F1-score of 0.857 at the 55th epoch, which lowers afterward, whilst

the 50-layer one achieves 0.825 at the the last epoch. The 32-layer CIFAR achieves

0.872 of F1, the highest score of all models tested in the present work, while the

deeper 56-layer remains at 0.828, comparable with the 50-layer ILSVRC (0.826). We

further train the 34-layer ILSVRC-based model and the 32-layer CIFAR-derived one

until the 100th epoch, however none of them is improved by this action, even worse,

the latter has a poorer F1-score (0.853 instead of 0.857). Fig.6.15 shows examples

of segmentation results from four different CDNET videos using the best ResNet

variation of each adaption scheme.

69

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Deconv/Depth

linear/34

linear/50

non-linear/34

non-linear/50

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Deconv/Depth

linear/32

non-linear/32

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Deconv/Depth

linear/34

linear/50

non-linear/34

non-linear/50

(a) ILSVRC-derived models

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Deconv/Depth

linear/32

non-linear/32

(b) CIFAR-derived models

Figure 6.10: F1-score and loss curves for the deconvolutional residual networks. Values

for both training (dashed lines) and validation (solid lines) are shown. Once again, the

smaller models (34-layer in Fig. 6.10a) have better performance: 0.842 (nonlinear) and

0.832 (linear) for the ILSVRC; and the CIFAR-based nets achieve higher F1-scores: 0.849

(linear) and 0.841 (nonlinear).

70

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Depth
34
50

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Depth
32
56
110

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Depth
34
50

(a) ILSVRC-derived models

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Depth
32
56
110

(b) CIFAR-derived models

Figure 6.11: F1-score and loss curves for the dilated residual networks. Values for both

training (dashed lines) and validation (solid lines) are shown. The 110-layer model of Fig.

6.11(b) had its training halt at 46 epochs, that is the reason why its curve stops shortly

after the 40 mark, however it was trained for more iterations since it had 4 frames per

mini-batch, as opposed to the 16 standard. Both ILSVRC models appear to converge to

similar values, though the 34-layer net attains an F1-score of 0.857 at the 55th epoch. The

32-layer CIFAR achieves the highest score of all models with 0.872 of F1-score, while the

deeper 56-layer remains at 0.828, comparable with the 50-layer ILSVRC (0.825).

71

6.4 Use of pre-trained models

Next, we assess how pre-trained models influence training and if results are indeed

better. Furthermore, we analyze whether projection or direct substitution (Section

5.4.2) is more adequate to adapt the 3-channel entry of the original networks to

our 2-channel input. There are several models available to be used in this case, but

since we had a constraint of time in this work we only tested the ILSVRC networks,

since those are more widely available and have Torch implementations that could be

easily modified, more precisely we evaluated 34 and 101-layer variations by virtue

of the smaller being consistently the best across all experiments, and the larger to

measure if more complex networks also benefit from this approach. The sole training

configuration we altered for the specific case of pre-trained models was the initial

learning rate, which was reduced by a factor of 10 (becoming equal to 0.001), because

parameters are not random anymore and fine-tuning requires smaller updates.

Initially, we fine-tuned the 101-layer up-sampling architecture using both types of

adaption (Fig. 6.12) and obtained gains in performance for both, while the randomly

initialized model had a maximum F1-score of 0.691 within 60 epochs, the pre-trained

model with direct substitution adaptation achieved 0.736 and the other 0.728, that

is respectively, 4.5% and 3.7% of difference.

Secondly, we proceed to the dilated networks and trained the 34-layer version.

Despite the short training (23 epochs), the net whose first convolution was replaced

had its F1-score increased by 1.5% and performed exceedingly well, reaching 0.872,

on pair with the best randomly initialized model (CIFAR-based dilated residual

network) and even lower loss. However, the architecture adapted by the projection

scheme (as well as the nonlinear deconvolution variations) failed to learn, that is, its

score remained at zero. Those behaviors indicate that indeed the use of pre-trained

parameters have the potential to greatly improve the models if hyper-parameters

are set correctly, moreover, the direct substitution design are superior to projection.

72

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Epoch

F1-Score

Adaption
substitution
projection

not pretrained

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Adaption
substitution
projection

not pretrained

Figure 6.12: F1-score and loss curves for fine-tuned up-sampling residual networks. Values

for both training (dashed lines) and validation (solid lines) are shown. Both types of

adaption succeed and attain higher scores than their randomly initialized counterpart, the

one with projection has an F1-score of 0.728 and the one adapted by direct substitution

of 0.736, while the model trained from scratch achieves 0.691.

6.5 Summary

At last, we compare all trained models with regards not only to their F1-score

and loss, but also the precision and recall measures individually (Table 6.2), so it is

possible to better comprehend how each model has learned and whether they have

a bias towards the most predominant class (background). We can instantly see the

that the two best models are the 32-layer CIFAR-derived dilated network and the

pre-trained 34-layer ILSVRC-based dilated one adapted by direct substitution, both

with 87.2% of F1-score, which is competitive with the 90.5% reported in [1] while

requiring significantly less computation and being much faster, since our models

calculate all output pixels simultaneously and the original, one at a time.

Besides, it is clear that most models have similar precision and recall, which means

that they were capable of learning to predict the foreground and not to constantly

guess the same class. The ILSVRC-based up-sampling networks are the models

whose metrics are uneven the most, this phenomenon may be explained by the

strong down-sampling factor (32 times) they perform that cannot be later recovered

73

1 10 20 30 40 50 60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Epoch

F1-Score

Adaption
substitution

not pretrained

1 10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

0.12

Epoch

Loss

Adaption
substitution

not pretrained

Figure 6.13: F1-score and loss curves for the fine-tuned dilated residual networks. Values

for both training (dashed lines) and validation (solid lines) are shown. The pre-trained

dilated version with direct adaptation had its training halt at the 23th epoch, however it

is obvious the gain in performance over the model randomly initialized; even with such

short training it attains 0.872 of F1-score and can still further improve. The network with

adaption by projection failed to learn and is not plotted in the figure.

by the simple bilinear interpolation, which amplifies the small initial bias.

74

Table 6.2: Summary of metrics for the best single epoch of each trained model. The

F1-score (F1), precision (Prec), recall (Rec), and loss (Loss) measured in the validation

set for the best epoch (Epoch, outside parenthesis) within the trained interval (Epoch,

inside parenthesis). Model whose metrics have — instead of values failed to converge. The

best models were the 32-layer CIFAR-derived dilated network and the pre-trained 34-layer

ILSVRC-based dilated model adapted by direct substitution.

Model F1 Prec Rec Loss Epoch

Base Adaption Depth Pretrained

LeNet5

original [1] 4 no 79.3 79.6 84.0 2.22E-2 30 (65)

lin deconv 4 no 26.2 16.1 87.1 9.42E-2 49 (50)

lin deconv w/ BN 4 no 84.9 84.4 85.9 1.48E-2 97 (100)

non-lin deconv 4 no 26.6 16.4 87.3 9.10E-2 57 (57)

non-lin deconv w/ BN 4 no 83.0 82.6 83.9 1.72E-2 52 (60)

up-sample 4 no 76.9 78.3 76.3 2.38E-2 60 (60)

up-sample w/ BN 4 no 79.5 81.7 78.3 2.02E-2 60 (60)

dilation 4 no 78.9 77.6 81.5 2.24E-2 59 (60)

dilation w/ BN 4 no 82.9 81.4 85.3 1.87E-2 60 (60)

CIFAR ResNet

lin deconv 32 no 84.9 86.6 83.8 1.43E-2 60 (60)

non-lin deconv 32 no 84.1 86.9 81.9 1.46E-2 59 (60)

up-sample 32 no 86.7 85.9 87.7 1.26E-2 97 (100)

dilation

32 no 87.2 86.8 88.1 1.23E-2 59 (60)

56 no 82.8 85.1 81.8 1.48E-2 54 (60)

110 no 77.9 81.9 76.9 1.68E-2 46 (46)

ILSVRC ResNet

lin deconv
34 no 83.2 82.4 84.6 1.62E-2 58 (60)

50 no 81.3 81.8 81.4 1.72E-2 60 (60)

non-lin deconv

34 no 84.2 83.4 85.4 1.52E-2 60 (60)

34 substitution — — — — —

50 no 81.4 86.2 77.7 1.65E-2 57 (60)

up-sample

34 no 70.3 76.0 66.2 2.44E-2 45 (60)

50 no 71.3 75.6 68.2 2.42E-2 59 (60)

101 no 69.5 68.3 71.7 2.84E-2 42 (60)

101 substitution 73.6 82.0 67.6 2.11E-2 53 (60)

101 projection 72.8 80.6 67.1 2.12E-2 53 (60)

dilation

34 no 85.7 84.9 87.0 1.35E-2 55 (60)

34 substitution 87.2 88.8 86.0 1.15E-2 23 (23)

34 projection — — — — —

50 no 82.6 82.8 82.9 1.64E-2 51 (60)

75

(a) Input (b) Groundtruth (c) Bilinear (d) Lin-deconv (e) Dilated

Figure 6.14: Examples of segmentation results for the CDNET database using either

one of the three adaptations on the LeNet-based model. All three models use batch

normalization. Note that the linear deconvolution model is the only one among the three

capable of dealing with shadows, while de dilated model is the worst one.

76

(a) Input (b) Groundtruth (c) Bilinear (d) Lin-deconv (e) Dilated

Figure 6.15: Examples of segmentation results for the CDNET database using either

one of the three adaptations on the ResNet-based model. Note that the residual networks

were capable of learning to ignore shadows.

77

Chapter 7

Future work and conclusion

Throughout this work we studied different deep learning networks to deal with

the foreground segmentation task in videos from surveillance cameras. We proposed

fast and efficient models that compute the pixel-wise segmentation map in real-time

taking as input temporally aligned reference and a target frames. The proposed

techniques are competitive with current stat-of-the-art methods for the CDNET

database [4]. Also, we analyzed the effectiveness of transfer learning when both task

domain and input representations are different.

7.1 Future work

This work focused on training networks through optimization of the binary cross

entropy as the cost function to detect the presence of foreground objects in surveil-

lance videos. However, we verified that this is not ideal for binary segmentation,

since it does not take into account the class imbalance natural to the FG segmenta-

tion task. We could try setting different weights to each class in order to compensate

for this issue, but directly employing the F1-score (Dice coefficient) as the cost func-

tion is the more reasonable alternative because it inherently accounts for the false

positive and negative rates, and that is the function we ultimately want to maxi-

mize. Thus replacing the the cross entropy by the Dice loss should contribute in

training better models. Another straightforward modification is fine-tuning of the

detection threshold at the end, which may boost the F1-score a few percentiles by

equalizing precision and recall, or more radically substituting the fixed pre-defined

78

threshold by an adaptive one.

Furthermore, we were able to demonstrate that using dilation to adapt a clas-

sification network into a FG segmentation one indeed works, thus we intended to

further experiment with this approach by increasing the dilation factor until the

image resolution is kept intact throughout the whole model in order to determine

where the computational cost surpasses the benefit of increased performance.

In this work, we did not investigated any pre-trained version of CIFAR-based

models, even though such architecture achieved the best performances. Hence, we

should train these models since that seems to be a simple and effective manner of

enhancing the F1-score. Moreover, we assumed that bilinear interpolation was the

best up-sampling method with non-learnable parameters. Nevertheless, we could use

Nearest Neighbor (NN) up-sampling that also fulfills the no learning requirement

while being even simpler. We should then inspect whether bilinear or NN is better.

At last, we ought to test the best performing models in the challenging VDAO

dataset and assess if the proposed networks are robust even when dealing with

moving cameras in extremely cluttered industrial environments.

7.2 Conclusion

This work verified that classification models can be successfully transposed to the

FG segmentation domain and that transfer learning is effective even when models’

input is essentially different. Furthermore, we demonstrated that, for the task at

hand, dilation is a better approach than direct up-sampling and reconstruction by

deconvolution, and that preserving local spatial context contributes to the network’s

classification power. Besides, we corroborate the recent trend that deeper models

are not necessarily always better as our shallower networks consistently outperform

their deeper counterparts.

Finally, we obtain a real-time foreground segmentation algorithm that is competi-

tive with the state-of-the-art for the CDNET dataset (at least within the considered

79

video categories) and which may be readily enhanced and possibly surpass the cur-

rently best methods.

80

Bibliography

[1] BRAHAM, M., VAN DROOGENBROECK, M., “Deep background subtraction

with scene-specific convolutional neural networks”. In: International Confer-

ence on Systems, Signals and Image Processing (IWSSIP), pp. 1–4, Bratislava,

Slovakia, May 2016.

[2] CUEVAS, C., MARTÍNEZ, R., GARCÍA, N., “Detection of stationary fore-

ground objects: a survey”, Computer Vision and Image Understanding, v. 152,

pp. 41–57, November 2016.

[3] COLLOBERT, R., KAVUKCUOGLU, K., FARABET, C., “Torch7: a matlab-

like environment for machine learning”. In: BigLearn, NIPS Workshop, n.

EPFL-CONF-192376, 2011.

[4] WANG, Y., JODOIN, P.-M., PORIKLI, F., et al., “CDnet 2014: an expanded

change detection benchmark dataset”, pp. 387–394, June 2014.

[5] CHRISTIANSEN, P., NIELSEN, L. N., STEEN, K. A., et al., “DeepAnomaly:

combining background subtraction and deep learning for detecting obstacles

and anomalies in an agricultural field”, Sensors, v. 16, n. 11, pp. 1904, Novem-

ber 2016.

[6] DA SILVA, A. F., THOMAZ, L. A., CARVALHO, G., et al., “An annotated

video database for abandoned-object detection in a cluttered environment”. In:

International Telecomunications Symposium (ITS), pp. 1–5, August 2014.

[7] GOODFELLOW, I., BENGIO, Y., COURVILLE, A., Deep learning. MIT

Press, 2016. Available at: http://www.deeplearningbook.org.

81

[8] SAHAMI, M., DUMAIS, S., HECKERMAN, D., et al., “A Bayesian approach

to filtering junk e-mail”. In: Learning for Text Categorization: Papers from the

1998 workshop, v. 62, pp. 98–105, July 1998.

[9] MCCULLOCH, W. S., PITTS, W., “A logical calculus of the ideas immanent in

nervous activity”, The bulletin of mathematical biophysics, v. 5, n. 4, pp. 115–

133, December 1943.

[10] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J., Learning internal

representations by error propagation, Report, DTIC Document, January 1986.

[11] HINTON, G. E., OSINDERO, S., TEH, Y.-W., “A fast learning algorithm for

deep belief nets”, Neural computation, v. 18, n. 7, pp. 1527–1554, July 2006.

[12] HE, K., ZHANG, X., REN, S., et al., “Deep residual learning for image recogni-

tion”. In: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[13] KRIZHEVSKY, A., SUTSKEVER, I., HINTON, G. E., “ImageNet classifica-

tion with deep convolutional neural networks”. In: Advances in neural infor-

mation processing systems, pp. 1097–1105, January 2012.

[14] ROSENBLATT, F., “The perceptron: a probabilistic model for information

storage and organization in the brain.”, Psychological review, v. 65, n. 6, pp. 386,

November 1958.

[15] HORNIK, K., “Approximation capabilities of multilayer feedforward networks”,

Neural networks, v. 4, n. 2, pp. 251–257, 1991.

[16] ROMERO, A., BALLAS, N., KAHOU, S. E., et al., “FitNets: hints for thin

deep nets”, CoRR, v. abs/1412.6550, January 2014.

[17] HUBEL, D. H., WIESEL, T. N., “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex”, The Journal of physiology,

v. 160, n. 1, pp. 106–154, January 1962.

[18] FUKUSHIMA, K., “Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position”, Biological

cybernetics, v. 36, n. 4, pp. 193–202, April 1980.

82

[19] LECUN, Y., BOTTOU, L., BENGIO, Y., et al., “Gradient-based learning ap-

plied to document recognition”, Proceedings of the IEEE, v. 86, n. 11, pp. 2278–

2324, November 1998.

[20] IOFFE, S., SZEGEDY, C., “Batch normalization: accelerating deep network

training by reducing internal covariate shift”. In: Proceedings of The 32nd In-

ternational Conference on Machine Learning, Lille, France, July 2015.

[21] LONG, J., SHELHAMER, E., DARRELL, T., “Fully convolutional networks

for semantic segmentation”. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 3431–3440, June 2015.

[22] YU, F., KOLTUN, V., “Multi-scale context aggregation by dilated convolu-

tions”, May 2016.

[23] WREN, C. R., AZARBAYEJANI, A., DARRELL, T., et al., “Pfinder: real-

time tracking of the human body”, IEEE Transactions on pattern analysis and

machine intelligence, v. 19, n. 7, pp. 780–785, July 1997.

[24] GALLEGO, J., PARDAS, M., LANDABASO, J.-L., “Segmentation and track-

ing of static and moving objects in video surveillance scenarios”. In: 2008 15th

IEEE International Conference on Image Processing, pp. 2716–2719, October

2008.

[25] STAUFFER, C., GRIMSON, W. E. L., “Adaptive background mixture models

for real-time tracking”. In: Computer Vision and Pattern Recognition, 1999.

IEEE Computer Society Conference on., v. 2, June 1999.

[26] LI, L., LUO, R., MA, R., et al., “Evaluation of an IVS system for abandoned

object detection on pets 2006 datasets”. In: Workshop on Performance Evalu-

ation of Tracking and Surveillance, pp. 91–98, December 2006.

[27] LIU, N., WU, H., LIN, L., “Hierarchical ensemble of background models for

PTZ-based video surveillance”, IEEE transactions on cybernetics, v. 45, n. 1,

pp. 89–102, January 2015.

83

[28] MOO YI, K., YUN, K., WAN KIM, S., et al., “Detection of moving objects

with non-stationary cameras in 5.8 ms: bringing motion detection to your mo-

bile device”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pp. 27–34, June 2013.

[29] THOMAZ, L. A., DA SILVA, A. F., DA SILVA, E. A., et al., “Abandoned

object detection using operator-space pursuit”. In: Image Processing (ICIP),

2015 IEEE International Conference on, pp. 1980–1984, September 2015.

[30] MADDALENA, L., PETROSINO, A., “Stopped object detection by learning

foreground model in videos”, IEEE transactions on neural networks and learn-

ing systems, v. 24, n. 5, pp. 723–735, January 2013.

[31] DENG, J., DONG, W., SOCHER, R., et al., “ImageNet: a large-scale hierar-

chical image database”. In: Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pp. 248–255, IEEE, June 2009.

[32] NOH, H., HONG, S., HAN, B., “Learning deconvolution network for seman-

tic segmentation”. In: Proceedings of the IEEE International Conference on

Computer Vision, pp. 1520–1528, 2015.

[33] CHEN, L.-C., PAPANDREOU, G., KOKKINOS, I., et al., “Deeplab: semantic

image segmentation with deep convolutional nets, atrous convolution, and fully

connected CRFs”, , June 2016.

[34] SIMONYAN, K., ZISSERMAN, A., “Very deep convolutional networks for

large-scale image recognition”. In: International Conference on Learning Rep-

resentations (ICLR), May 2015.

[35] GOYETTE, N., JODOIN, P.-M., PORIKLI, F., et al., “Changedetection. net:

a new change detection benchmark dataset”. In: IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition Workshops, pp. 1–8, June

2012.

[36] RESEARCHERS, F. A. I., “Torch implementation of ResNet and training

scripts”, available at: https://github.com/facebook/fb.resnet.torch.

84

[37] GLOROT, X., BENGIO, Y., “Understanding the difficulty of training deep

feedforward neural networks”. In: Aistats, v. 9, pp. 249–256, March 2010.

[38] HE, K., ZHANG, X., REN, S., et al., “Delving deep into rectifiers: surpassing

human-Level performance on ImageNet classification”. In: The IEEE Interna-

tional Conference on Computer Vision (ICCV), December 2015.

[39] YOSINSKI, J., CLUNE, J., BENGIO, Y., et al., “How transferable are fea-

tures in deep neural networks?” In: Advances in neural information processing

systems, pp. 3320–3328, December 2014.

[40] HE, K., ZHANG, X., REN, S., et al., “Identity mappings in deep residual

networks”, arXiv preprint arXiv:1603.05027, , October 2016.

85

